

BIRZEIT UNIVERSITY

FACULTY OF GRADUATE STUDIES

“Dynamics and Stability of Rover”

By

Muhannad M. Abdo

Submitted in partial fulfillment of the requirements for the

Master Degree in Scientific Computing from the Faculty of

Graduate Studies at Birzeit University

Supervised by

Dr. Hassan A. Shibly

Birzeit, Palestine,

June 8, 2006

I

Abstract

Today’s stability criteria are not capable for providing a precise definition and

precaution suited for a mobile robot: traversing on unpredictable surface, exerting

manipulation forces and torques, susceptible for variable ground normal forces, or

subjecting to attitude orientations. Thus, this research firstly examined the dynamic effects of

mobile robot traversing on different surface geometries with variable configurations and

attitudes, and it secondly investigated their impact on the normal forces distribution. Finally,

it reflected the influences of these factors on the dynamic stability of the rover in order to

protect the rover from tumbling. This study presents a new dynamic stability criterion done

on a new mechanical structure; quadruped mobile robot equipped with wheels and legs

called rover.

The primary contribution of this thesis is exploiting the Denavit-Hartenburg

approach for assigning the coordinate frames at link’s end-terminals, and then relating

between each two adjacent frames by forming homogeneous transformation matrix.

Forward kinematics is exploited to relate the end-effectors (four wheels) with base frame

(platform). The platform attitudes (Roll, Pitch, and Yaw) are evaluated in relative to

proposed universal frame at the center of platform. The coordination between locomotion

(wheels’ motion) and manipulation (joints’ motion) is clearly defined.

In this work, the dynamic equations of motion are driven by using Newton-Euler

Recursive Relations. The kinematics of links (velocities and accelerations) are propagated in

forward recursion starting from base frame and ending at the four end-effectors, link by link.

As well as, the dynamics of links (generalized forces and moments) are propagated in

backward recursion starting from four end-effectors frame and ending at base frame, link by

link. The force and moment propagated into a base link (platform) are determined as a

II

function of gravity forces, inertial forces, inertial toques exerted on the center of mass of

links, and ground normal forces exerted on the end-effectors.

The equations of equilibrium for four legs are considered indeterminate system, thus

in this thesis the normal forces are evaluated for three contact legs in the case the non-

symmetric rover. However, in the case of symmetric configurations the normal forces are

distributed equally between the sides which sharing the same the inertial forces, ground

geometries, and platform attitude. Thus regarding to symmetric four legs are evaluated by

considering two legs sharing the same value.

A new dynamic stability criterion is presented for rover in this thesis, and it is

operating on various shapes of surfaces, and variable rover configurations. In addition, this

criterion provides on-line calculations for the effect of variable rover configurations, various

surface geometry, platform attitudes, kinematic values, dynamic effects, and variable ground

normal forces. The on-line calculations are referred relatively to the universal frame.

The simulation model is also presented for various examples using MatLab in order

to provide on-line calculations for predicting the behavior of a physical system under a

variety of surface geometries and rover configurations.

Keywords: mobile robots, center of mass, static and dynamic stability margin, forward and

inverse kinematics, forward and backward dynamics, wheeled-legged manipulator, uneven

terrain, inertial forces and moments, inertial acceleration, normal and frictional forces,

Newton-Euler Recursive Relations.

III

 ملخص

ما تم إيجاده سابقاً من معايير للثبات الستايتيكي والديناميكي لا يزود بدلائل آافية بخصوص

 وخصوصاً في حالات السطوح ،من خطر الإنقلاب) mobile robots(وقاية العربات المتحرآة

لتلك المتباينة في قوى رد الفعل المتغيرة على الأرجل الملامسة ،مستويةالالغير منتظمة وغير

 من تغيير وضعية هتتعرض العربة في تلك الحالات لتأثير القوى الديناميكية وما يتبع. السطوح

 وتم ،يقدم هذا البحث مجسم ميكانيكي جديد لعربة ذو أربع أرجل مزودة بالعجلات. دوران العربة

 بطرق محوسبة وإيجاد قوى رد الفعلdynamics and kinematicsتصميمها ودراسة تأثيرات

 .المجهولة وتاثيرات هذه العوامل مشترآة على الإتزان الديناميكي

 لتعيين المحاور الثلاثية لأجزاء)Denavit and Hartenberg(هذا البحث يستخدم

 لإيجاد العلاقة بين (homogeneous transformation)العربة الداخلية وإستخدام مصفوفة

 (end-effectors) والعجلات (platform) ما بين القاعدة أما العلاقة المرتبطة. المحاور المتجاورة

 حول زوايا دوران القاعدة المجهولةقيميجاد ، آذلك تم إ(forward kinematic)فلقد قمنا بإستخدام

 . محور ثابت

ير ال ث قد تم توظيفها لإيجاد تأ Newton-Euler Recursive Relationsطريقة

Kinematics القوى ديناميكية ومن ثم تم إيجاد تأثير، حتى العجلات الأربع إبتداءاً من القاعدة

 .والعزم على آل جزء من أجزاء العربة بداية من العجلات حتى القاعدة

IV

قدم هذا البحث معيار جديد للإتزان الديناميكي للعربة استنادًا على قيمة العزم على سطح

 .ن بعيدة عن القيمة الحرجةالقاعدة المعبر عنها نسبة للمحور الثابت على أن تكو

 للتطبيق على عدة أمثلة تحتوي على عدة متغيرات في Matlabولقد تم إستخدام برنامج ال

، وآذلك ضمن تأثير شكل تضاريس سطح المريخ والتغيرات الحاصلة على حرآة أجزاء العربة

 .ديناميكية متغيرة

V

ACKNOWLEDGMENT

I would like firstly to appreciate my supervisor Dr. Hassan Shibly,

because he drew my attention toward the Robotic Science. In addition, he

granted me the spark to initiate the scientific research from scratch, and he

provided me further valuable comments, techniques, and information in order

to deeply penetrate the arduous setbacks throughout the years. As well as, I

highly appreciate Dr. Hassan for his advices regarding to my future.

I would like also to thank my parents, brothers, and sisters for making

the house atmosphere excellent for concentration, and for encouraging me.

Furthermore, I am thankful for my close friend Mr. Wafa Al-Jamal for

his encouragement, valuable information and practical experience in mobile

robot.

VI

NOTATIONS

Abbreviations

DH Denavit-Hartenburg

RCF right conjunctional frame

LCF left conjunctional frame

RDF right disjunctional frame

LDF left disjunctional frame

RFS right front shoulder

RRS right rear shoulder

LFS left front shoulder

LRS left right shoulder

K front or rear chosen under a certain conditions

RKIS right front/rear input system

LKIS left front/rear input system

GCP ground contact point

Coordinate frames

O frame

OU universal frame

O0 base frame

O0R right base frame

O0L left base frame

VII

O1R right conjunctional frame

O1L left conjunctional frame

O2R right disjunctional frame

O2L left disjunctional frame

O3RF locomotive wheel frame of right front leg

O3RR locomotive wheel frame of right rear leg

O3LF locomotive wheel frame of left front leg

O3LR locomotive wheel frame of left rear leg

O4RF end-effector frame of right front leg

O4RR end-effector frame of right rear leg

O4LF end-effector frame of left front leg

O4LR end-effector frame of left rear leg

OWRF wheel universal frame of right front leg

OWRR wheel universal frame of right rear leg

OWLF wheel universal frame of left front leg

OWLR wheel universal frame of left rear leg

OSRF surface frame of right front leg

OSRR surface frame of right rear leg

OSLF surface frame of left front leg

OSLR surface frame of left rear leg

OG ground universal frame

VIII

Drawings

 axis is pointing in the paper

⊗ axis is pointing out the paper

• indicates that the wheel is in contact with ground.

o indicates that the wheel is not in contact with ground.

•a means that the leg is in contact with ground.

a o means that the leg is not in contact with ground.

Variables and constant

A homogeneous transformation

B generalized homogeneous transformation matrix

q generalized coordinate

θ variable joint

α twist angle

n normal vector

o orientation vector

a approach vector

p position vector
1i

ir
− position vector from frame i to frame i-1

di link offset of link i.

ai link length of link i.

mi mass of link i.

m total mass of the rover

IX

TERMINOLOGIES

Manipulator robot: is a set of links connected with joints that executes a set

of manipulations via joints and links, while the base link is fixed by stationary

pillar.

Manipulation: is the movement of robot’s components with respect a fixed

base frame.

Mobile robot: executes a set of manipulations and locomotions during the

travel, while the base link moves.

Locomotion: is the movement of the base frame with respect the universal

frame as resulted of the movement of the locomotive device. This process

requires scientific and accurate coordination between base link, robot’s

components, and the geometry of the ground.

Base link: is considered the first device of the four legged manipulators, it is

not bolted with stationary pillar as Stanford, Screw, Puma, etc. Therefore, it is

influenced by the configurations of the four legs, the geometry of the ground,

as well as the generalized forces acting on the end-effectors.

End-effector link: is the last link that interacts on the surrounding

environment. Its functionality integrates the manipulation and the locomotion

using finger, arm, leg or wheel. In this thesis, there are four end-effectors, i.e.

four wheels.

Kinematics: is concerned with study of motion of robot (i.e. displacements,

velocities, and accelerations of links) regardless the forces that cause these

motions.

X

Forward kinematics: is the study of position and orientation of the end-

effector as a function of the joint angles, in forward manner starting from base

to end-effector.

Inverse kinematics: is a study of the joint angles as a function of position and

orientation of the end-effector.

Dynamics: is concern with study of forces and moments (i.e. normal forces,

gravity forces, and inertial forces and moments) that cause the motion without

regard to the displacements, velocities, and accelerations.

Forward dynamics: is the derivation of kinematics from forces and moments

starting from platform and ending at wheel, link by link.

Inverse dynamics: is the derivation of forces and moments from the

kinematics starting from wheel and ending at platform, link by link.

Stability criterion: is a concept or a technique made to prevent the robot from

turning over.

Static stability: is a study concerns in mobile robot moving with zero or

constant velocity (acceleration = zero) in the absence of inertial forces, under

the effect of ground geometries, normal forces exerted on end-effectors, and

gravity forces exerted on center of masses of links. It discusses the support

polygon where the line of gravity will fall inside. Thus, the mechanical system is

more stable and comfortable with using more legs.

Dynamic stability: is the study that concerns in mobile robot moving with

regularly linear velocity (constant acceleration). The additional effects added to

static case are the influences of frictional forces, and inertial forces and torques

XI

acting on center of masses of links. This study requires arduous control and

numerical computations in order to achieve on-line calculations.

Center of mass: is a single point around which the total mass of the rover is

balanced in all direction.

Support polygon: is the polygon area delimited by the projections of

supported legs onto horizontal plane.

Ground contact points: are the numbers of landing legs on the surface.

Generalized coordinates: are used to describe the geometric configurations

or the degrees of freedom for mechanical system.

Generalized forces: are the forces and moments acting by actuator on joints

in the direction of the generalized coordinates.

XII

List of Figures

Figure 1.1. Mars Pathfinder mission settled on Ares Vallis on July 4, 1997 [17]. 3
Figure 1.2. Spirit and opportunity robot [19]. .. 4
Figure 1.3. Rover components composed of four wheeled-legged manipulators. 7
Figure 1.4.Top view shows the support polygon and pattern onto horizontal plane........ 16
Figure 1.5. Energy Stability Margin ... 17
Figure 2.1. Joint axes assignments and frame numbering for the Rover.......................... 35
Figure 2.2. xi-axis setting up. a. In parallel joint axis, xi axis is in the line directed from

frame Oi-1 to Oi. b. In intersecting joint axis, xi axis is perpendicular to the plane or
parallel to the vector cross product ±zi-1×zi. ... 36

Figure 2.3. Assignments of coordinate frame on the form of home position................... 37
Figure 2.4. Pairs of two adjacent links. .. 39
Figure 2.5. Position vector from base to end-effector frame.. 44
Figure 2.6. Differential gear joint... 45
Figure 2.7. Two frames attached at the base link. .. 45
Figure 2.8. Transform graph for the four legs, starting from platform frame to end-

effector frame.. 48
Figure 2.9. The frames for the four legs,.. 48
Figure 2.10. The coordinate frame of manipulated wheel. ... 50
Figure 2.11. Wheel angular movement tracked linearly on ground.................................. 51
Figure 2.12. Two opposite wheels enabling the rover for rotating forward, the arc length

of the wheel is tracked on ground, from start to finish of the travel......................... 54
Figure 2.13. Body attitude provides three rotational degrees-of-freedom (φ ,θ ,ψ),

assuming congruent frames for platform and universal frame at the beginning....... 58
Figure 2.14. Roll motions about yU axis by φ angle, Pitch motions about zU axis by θ

angle, and Yaw motions about xU axis by ψ angle.. 58
Figure 2.15. Transform graph of universal frame and two bases frames. 60
Figure 2.16. The transform graph of rover frames. .. 61
Figure 2.17. The geometric configurations and ground input Systems relative to the two

legged manipulators. ... 63
Figure 2.18. The black circle indicates for supported legs and white circle indicates for

not supported legs with the ground... 64
Figure 2.19. Pitch angle. ... 65
Figure 2.20. Rotation about lateral axis of universal frame by θ 66
Figure 2.21. Elevation difference .. 67

XIII

Figure 2.22. Front view shows the platform rotating about longitudinal axis of universal
frame byφ . y0-axis and yU-axis are pointing out of paper.. 69

Figure 2.23. Pythagorean relations... 70
Figure 2.24. The altitude of RCF O1R to ground frame OG.. 72
Figure 2.25. Coordinate frames of OU, O0R, O0L and O1L .. 75
Figure 2.26. Rotation about vertical axis of universal frame byψ 78
Figure 2.27. Side view shows the difference in the locations of LC and RC, and top view

shows the rotational yaw angle ψ occurred between the universal and platform
frame. .. 79

Figure 2.28. a. Arc path occurs when 4 4Ra θ ≠ 4 4La θ .. 80
Figure 2.29. Front view shows the four legs open by an angle about z1R........................... 82
Figure 2.30. Platform universal frame, wheel universal frame, and ground universal

frame are contingent frames for being having the same orientations. 85
Figure 2.31. Completed transform graph.. 86
Figure 2.32. End-effector pose ... 87
Figure 2.33. Surface frame. .. 91
Figure 3.1. Dynamics propagations.. 96
Figure 3.2. Recursive Newton-Euler Formulation notations on the base of the standard of

the DH convention. ... 97
Figure 4.1. Normal forces acting on wheels perpendicular to surface. 122
Figure 4.2. External forces and moments exerted by ground on end-effector projected in

frame O4. ... 125
Figure 5.1. Four critical moments .. 138
Figure 5.2. Platform attitude. ... 142
Figure 5.3. Normal forces .. 143
Figure 5.4. Universal moments and critical moments about zU axis.............................. 145
Figure 5.5. Universal moments and critical moments about yU axis. 146
Figure 5.6. Propagated torques about (xU,yU,zU) axes.. 147
Figure 5.7. Propagated moment of gravity forces about (xU,yU,zU) axes....................... 147
Figure 5.8. Propagated moment of inertial forces about (xU,yU,zU) axes....................... 148
Figure 5.9. Propagated moment of normal forces about (xU,yU,zU) axes....................... 148
Figure 5.10. Rover posture on step flat-inclined surface.. 149
Figure 5.11. Platform attitude. .. 150
Figure 5.12. Normal forces. .. 151
Figure 5.13. Universal moments and critical moments about yU axis. 152
Figure 5.14. Propagated torques about (xU,yU,zU) axes. ... 153
Figure 5.15. Propagated moment of gravity forces about (xU,yU,zU) axes. 153
Figure 5.16. Propagated moment of inertial forces about (xU,yU,zU) axes. 154
Figure 5.17. Propagated moment of normal forces about (xU,yU,zU) axes. 155

XIV

Figure 5.18. Rover’s shoulders closing on inclined surface. .. 156
Figure 5.19. Platform attitude. .. 157
Figure 5.20. Normal forces... 158
Figure 5.21. Universal moments and critical moments about zU axis. 159
Figure 5.22. Propagated moment of gravity forces about (xU,yU,zU) axes..................... 160
Figure 5.23. Propagated moment of inertial forces about (xU,yU,zU) axes..................... 160
Figure 5.24. Propagated moment of normal forces about (xU,yU,zU) axes..................... 161
Figure 5.25. Platform attitude. ... 163
Figure 5.26. Normal forces. ... 164
Figure 5.27. Rear legs lost the contact with ground. .. 165
Figure 5.28. Universal moments and critical moments about zU axis............................ 166
Figure 5.29. Pitch angle.. 168
Figure 5.30. Normal forces... 169
Figure 5.31. Universal moments and critical moments about zU axis 170
Figure 5.32. Zooming for universal moments and critical moments about zU axis 170
Figure 5.33. Propagated torques about (xU,yU,zU) axes.. 171
Figure 5.34. Propagated moment of inertial forces about (xU,yU,zU) axes..................... 171
Figure 5.35. Propagated torques about (xU,yU,zU) axes.. 172
Figure 5.36. Propagated moment of normal forces about (xU,yU,zU) axes..................... 173
Figure 5.37. Platform pitch angle. .. 175
Figure 5.38. Normal forces... 176
Figure 5.39. Universal moments and critical moments about zU axis............................ 177
Figure A.1. Two adjacent links [65]. .. 194
Figure A.2. Types of joints... 195
Figure B.1. The atan2(y, x) function .. 198
Figure B.2. Point symmetric redundancy... 201
Figure C.1. Rover’s DH and dynamic parameters ... 212
Figure C.2. Link’s DH and Dynamic parameters. ... 213
Figure E.1. Transform graphs for four legged manipulators starting from universal to

end-effectors. .. 221
Figure E.2. Forces and moments exerted on link 4RF, 4RR, 4LF, and 4LR................. 222
Figure E.3. Forces and moments exerted on link 3RF, 3RR, 3LF, and 3LR................. 223
Figure E.4. Forces and moments exerted on link 2R, 2L. ... 224
Figure E.5. Forces and moments exerted on link 1R and link 1L. 225
Figure E.6. Forces and moments exerted on platform... 226

XV

List of Tables

Table 2.1. Kinematic parameters table based on DH convention. 40
Table 5.1. conf_1 → conf_2... 142
Table 5.2. Torques exerted on wheel. .. 146
Table 5.3. conf_0 → conf_0, conf_0 → conf_1, conf_0 → conf_2 149
Table 5.4. conf_0 → conf_0, conf_0 → conf_1, conf_0 → conf_2 156
Table 5.5. conf_0 → conf_0, conf_1 → conf_1, conf_2 → conf_2 162
Table 5.6. conf_0 → conf_0... 167
Table 5.7. conf_0 → conf_1... 174
Table A.1. DH explanation. ... 193
Table C.1. Dynamic parameters table. ... 215

XVI

Table of contents

Abstract .. I
ACKNOWLEDGMENT ... V
NOTATIONS ... VI
TERMINOLOGIES.. IX
Chapter One .. 1
1. Introduction... 1

1.1. Mechanical structures for mobile robots .. 3
1.1.1. Manipulation system .. 6
1.1.2. Locomotion system.. 9

1.2. Stability criterion .. 12
1.2.1. Static stability margin ... 13
1.2.2. Previous work on static stability ... 15
1.2.3. Dynamic stability margin.. 18
1.2.4. Previous work on dynamic stability .. 19

1.3. Computational kinematics and dynamics.. 25
Chapter Two .. 33
2. Kinematics of the rover.. 33

2.1. Coordinate frames.. 34
2.2. Denavit-Hartenburg parameters ... 38
2.3. Homogeneous transformation:... 41
2.4. Forward kinematics .. 42
2.5. Base frame ... 45
2.6. Platform frame... 47
2.7. Wheel kinematics ... 49
2.8. Platform kinematics ... 53
2.9. Platform universal frame .. 57

2.9.1. Attitude angles ... 62
2.10. Rover transform graph ... 83

2.10.1. Ground universal frame ... 83
2.10.2. Universal wheel frame .. 86
2.10.3. Surface geometries ... 91

Chapter Three .. 94
3. Computational Dynamics ... 94

3.1. Dynamic equations of motion .. 94
3.2. Output generalized coordinates.. 96
3.3. Newton-Euler Recursive Relations... 98

XVII

3.3.1. Forward recursion .. 99
3.3.2. Backward recursion .. 112

Chapter Four.. 118
4. System forces and moments ... 118

4.1.1. System weight .. 118
4.1.2. Normal force ... 120
4.1.3. Frictional force... 123
4.1.4. Wheeled motor torque ... 124
4.1.5. Constraints... 135

Chapter Five .. 137
5. Results and discussion.. 137
Chapter Six .. 179
6. Conclusion ... 179
References.. 183
Appendices .. 192
Appendix A: Denavit-Hartenburg Convention... 192
Appendix B: Inverse kinematics ... 196
Appendix C: Kinematic and dynamic parameters ... 207
Appendix D: Newton-Euler Recursive Formulation .. 216
Appendix E: Free-Body Diagram for four manipulators .. 221
Appendix F: Universal forces and moments... 227
Matlab Code... 231

1

Chapter One

1. Introduction

Mobile robots play a major role in development of our real life in

different areas. In the wake of the growing speed of technologies and

explorations, the human beings face challenges to accomplish specific missions

in dangerous environments safely in meaningful and purposeful manner. For

example, the explorations taken place inside volcanoes [1], nuclear reactors [2],

mining fields [3], construction and forestry industries [4], or planetary missions

[5, 6]. Those missions confront arduous processes and endanger the workers’

life to reach over a forbidden location entries. In fact, those explorations are

highly in need of replacement of direct human intervention with accessible

mobile machines, which achieve incorporation between the manipulation and

locomotion automatically. Therefore, countless efforts [7, 8, 9, 10, 11] have

been focused on autonomous mobile robots in order to avoid the human

operators from the dangerous environment.

2

Since 1960 [12], there have been a growing international interests in the

Mars exploration where the absence of life assurance. The scientists [13, 14]

have interested in Martian surface geology, topology, mineralogy, morphology,

geochemistry, and atmospheric environment. Indeed, they have drawn the

world’s attention for three main necessities throughout exploring those Martian

properties and characteristics: in order to make sure of the probability of last-

present life existence, understand the climate history, and search for what

resources can be benefited from over there. However, the indirect contact of

scientists with Mars from earth throughout telecommunication systems yields

uncompleted results. This reason has enforced the scientists’ needs directing

toward mobile robot capable for gaining sufficient amount of samples of sands

and rocks and subjecting these samples under tests and experiments on the

earth. Therefore, the planetary scientists have opened their eyes on the use of

small mobile robots since 1996 [15, 16], which are capable for traversing

random Martian terrain stably and smoothly for longer traverses and time. This

mission requires studies for: firstly, an efficient mechanical structure. Secondly,

effective dynamic stability criterion. Thirdly, mathematical analysis and

simulation for kinematics and dynamics in computational manner. Fourthly,

surface geometry and its dynamic disturbances.

3

1.1. Mechanical structures for mobile robots

The first micro-rover, named Sojourner [14], was launched aboard the

Mars Pathfinder spacecraft in 1996 and landed on Mars in July 4, 1997 [17], see

Figure 1.1. However, the Sojourner was designed for a very limited mission

distance and time; it traversed 100 meters as a total distance during its elapsed

time “83 sol” over there, while the average speed was 2.7 meters per traverse

day [17, 18].

a. Lander and rover.

b. Sojourner rover roamed on the Martian surface.

Figure 1.1. Mars Pathfinder mission settled on Ares Vallis on July 4, 1997 [17].

4

In 2003, NASA's Mars Exploration Rover mission sent two identical

six-wheeled mobile robots; the first was named Spirit and the second was

named Opportunity. The Spirit and Opportunity landed on opposite sides on

the surface of Mars and completed the mission in January 2004 [16]. They both

can move on terrain with five centimeters per second as top speed, and can

traverse 40 meters in Martian daytime, and the mission life was no more than

90 days and 1000 meter as total distance [19]. Robotic arm was attached on

platform for testing Martian rocks and soil as shown Figure 1.2.

Figure 1.2. Spirit and opportunity robot [19].

However, the previous traditional rovers have maintained stable in short

traverses and time, with slow and constant velocity, and in relatively benign

terrain [20] due to their inheritance of same mechanical characteristics, ignoring

rover kinematics and dynamics, neglecting the idea of existing of inertial effects

and unpredictable environments, imposing quasi-static motion, and disability to

5

define precise static and dynamic stability criterion capable for functioning in

all rover mechanical structures and surface geometries. In future Mars

exploration missions, there will highly be interests for autonomous mobile

robots that will broaden the range of exploration for long distance and time in

challenging terrain and obstacles more than encountered by previous rovers

[14, 21, 22].

Therefore, this work evades the idea of adopting any one of the past

mechanical characteristics, and it started from scratch in creating a new

mechanical model composed of four manipulator wheeled-legs sharing the

same platform as moving base link. The presented rover should maintain

statically and dynamically stable during the locomotion to accomplish Mars

mission. This is also the main issue in which this work treated and focused in

computational manner.

This work exhibits a new mechanical design for a quadruped mobile

robot. The four identical wheeled legs are gaining high level coordination

between manipulation and locomotion in various aspects, because the four legs

share symmetric mechanism and coordinate frames. The design here executes a

6

set of manipulations and locomotions integrated at the same time in

algorithmatic control for providing the dynamic stability. This feature

contributes in increasing the rover speed stably and smoothly on uneven

terrain.

1.1.1. Manipulation system

The rover is simply composed of common platform connected with four

wheeled-legged manipulators by differential joint. Notations are distributed on

right side, left side, front side, and rear side. Each wheeled-legged manipulator

connected with common platform will be represented as right front leg, right

rear leg, left front leg, and left rear leg, as shown in Figure 1.3. Each leg is

considered as a combination of five links and four joints, starting from

platform base link 0, and ended with end-effector link 4. The right side and left

side share the differential joint, joint 1, mounted above the mobile platform. At

the edge of platform in each side, each two legs share the joint 2 and it is

named conjunctional joint. Joint 3 divides those for two independent legs, i.e.

front shoulder and rear shoulder. Finally, Joint 4 connects the locomotive

wheel. The revolute joints are utilized here for controlling the mobility and

posture of the rover. Furthermore, the joints enable the end-effectors to select

7

the footholds on ground, control the distributions of ground normal forces,

and delimit the area of support polygon.

Figure 1.3. Rover components composed of four wheeled-legged manipulators.

The first joint, differential joint, rotates around the lateral axis of the

universal axis. The second joint, conjunctional joint, rotates around the

longitudinal axis of the platform edge. The third joint, disjunctional joint,

rotates around the lateral axis of the platform edge. Finally, a wheel is

connected by the fourth joint to provide protection from tipping onto its side

and to propel the entire rover on ground.

LCJ
LDJ

RR wheel

Differential
joint

LFS

RCJ
RDJ

RF wheel

Rear view

Right side

Left side

LR wheel

LF wheel

Front view RFS
RRS

LRS

8

Each wheel is equipped with DC motor for the actuating motion. The

rover has no breaking system, but the motors provide the feature of self-

locking system; so that if the motors of the four wheels are locked, the rover

will stop.

The number of degrees of freedom of each leg depends on the number

of joints in the rover. Usually in robotics science, each joint provides one

degree of freedom either for revolute or prismatic motion, unlike human joints.

Moreover, the platform will be susceptible to a sequence of changes in

configurations during the motion, while this mobility of platform will provide

the system with three degrees of freedom, i.e. three (φ ,θ ,ψ) related to

orientation of the platform represented in roll, pitch, and yaw.

The rover overall weighs was chosen to be 12kg, which is distributed

such that the platform weighs approximately 4kg, m1= 1kg, m2= 0 (by

approximation), m3= 1kg, and m4 (wheel) weighs= 0.5kg. The length and the

width of the platform respectively are 60cm and 40cm. The length of the each

shoulder (link 3) is 40cm. The inner and outer radii of each wheel are 3 cm and

5cm, respectively.

9

1.1.2. Locomotion system

The locomotion of mobile robot is defined as the movement of the

whole robot on the ground by employing either wheels or/and legs. Most

mobile robots use the wheels, which are easier to control and manoeuvre,

maintain stable, consume less energy, and move faster than legs on an even

terrain. However, the wheels cannot operate on uneven terrain efficiently,

because the wheels diameters have to be larger than the obstacles to overcome

and the rolling contact of such rovers on uneven terrain are susceptible to

complex wheeled-ground interactions [23] with the physical soil properties:

rocks distribution, friction characteristics and soft terrain. In addition, the

heavy-wheels or their payload may plow the soft terrain causing friction forces

and terrain damage thwarting the whole mission. Look at the practical

prototypes as in SOLERO [24], and CEDRA [25].

In contrast, the legs are capable to select footholds above discontinuous

ground, in which benefits the locomotion to traverse on an uneven terrain, that

comprises the capability of avoiding the obstacles and holes, walking up and

down the steps, overcoming the soft ground sinking and causing less terrain

damages, and controlling the distribution of forces. In addition, the positive

10

advantage of legs can add that they are omnidirectional, as it can provide for

directional movements forward, backward, sideways, or turn on the spot as

shown through the quadruped robot WARP1 [26]. However, legged mobiles

have many degrees of freedom that make it difficult to design and control.

Moreover, they are relatively slow speed and energy inefficient. In addition, at

least six legs are required for static walking, while three wheels are required for

static rolling. The practical examples on this type are Quadruped Aibo ERS-210

robot [27], WARP1 [26], TITAN VIII [28] or SILO6 [3].

Therefore, the mobile robot will be much more productive if it is

equipped with legs and wheels to over come the most challenges mentioned

previously. These wheeled-legged properties mentioned above were implied

from practical experiences taken place in several mobile robots; for example in

the case of Sojourner, Spirit, Opportunity, or Rocky 7 [29].

This thesis inherits the advantages and eliminates the drawbacks of both

legged and wheeled locomotion in computational manner, for being equipped

with four wheeled-legged manipulators. Thus, the platform a base link will

smoothly rotate in relative to configurations of four wheeled-legged

11

manipulators and surface geometries. In addition, the presented rover will

overcome obstacles, traverse uneven terrain at higher velocity in stable form

and with less power consumption. Furthermore, it will provide a reliable

passive mechanism for supporting the weight of the rover at inclined surface.

In addition, it can locomot forward, backward, and sideways.

This rover executes a set of manipulations and locomotions during the

travel. The supported legs of rover will be susceptible for discrete changes

when the legs are lifted or placed on variable surface geometries. This yield a

change on rover attitude with respect to universal frame, because the body’s

attitude is influenced by configurations of joints and surface geometries

subjected on the supported wheeled. These kinds of control, irrespective of

manipulation or locomotion, are required a computational stability measured

criterion that maintains the rover stable with different terrain types. However,

till now there is no precise static and dynamic criterion that can be common for

all different mechnical structures and surface geometries. The loss of stability

may lead to tipping over and then the mission will fail completely.

12

1.2. Stability criterion

Generally, stability is defined as the tendency of a robot to return to its

original equilibrium state after being influenced by a disturbance. This work

studies the stability of rover on the surface of Mars throughout overcoming any

perturbation that could enforce the rover to turn over. Many scientific authors

have dealt with specific definition which states that the turnover occurs when

the center of mass of rover undergoes a rotation about one of its edges of

support polygon. This rotation yields a reduction in the number of ground

contact points and a decrease in the boundary of the support polygon. The

remaining contact points will finally lie on a single line as axis of rotation.

Moreover, the moment acting around this single edge of support polygon could

enforce the rover to tumble making the system statically unstable. These

sentences have been formulated mathematically in order to relate the

geometrical shape of the ground directly with the manipulation and locomotion

of the rover.

There are two general classifications for rover stability; namely static

stability and dynamic stability. In 1968, McGhee and Frank were the first who

put forward the static stability criterion for an ideal machine moving at slow

13

and constant speed on even terrain. In 1976, Orin et. al were the first who

proposed dynamic stability criterion on the presence of inertial forces. Later,

several researchers have either extended the previous criteria or proposed new

stability criteria for both static and dynamic. Unfortunately, different

applications may require different stability margin criteria. Even if the stability

criterion is better evaluated, the mechanism of rover will be optimized in order

to cope with different terrain situations [30]. Thus, the criteria founded before

were insufficient to remain the most rovers upright or stable [31]. In any way, it

should be necessary to pay attention for the definitions for both static and

dynamic systems, and the previous criteria done in previous works.

1.2.1. Static stability margin

The static stability was traditionally determined by the support polygon

and the projection of the center of mass. These two parameters can formulate a

simple definition for static stability: “occurs when center of mass is above the

support polygon regardless of the effect of inertial and normal forces”.

However, this requires computational control for the legged configuration,

ground elevations, ground contact points, and the body attitude. The legged

configuration [26] studies the sequence and time in which the legs are lifted and

placed in ground and in which joint angles are manipulated. The ground

14

contact points, which delimit the support polygon, are chosen by the landing

legs on ground. The ground elevation is the input system at each supported

wheel.

Conditionally, the minimum requirements demanded for static stability

are three legs on contact with the ground, forming the support polygon at all

the times. The static stability requirements must enable the vertical projection

of the center of mass to be inside the boundary of the support polygon.

Otherwise, there will be moment acting around an edge of support pattern that

could enforce the rover to tumble, making the system statically unstable.

Tricycle has three contact points on the ground, and the boundary of

support polygon is delimited in a triangle area connecting the three contact

points. If the vertical projection of center of mass is fallen inside the boundary

of the support polygon, then the tricycle is characterized statically stable for

keeping itself upright. In contrast, Bicycle has two contact points on the

ground, and the boundary of support polygon is restricted in a single line

connecting the two contact points, and the center of mass is either above or

15

outside the line. Thus, the bicycle is always characterized statically unstable and

cannot keep itself upright at rest or constant speed.

The requirements for static stability mentioned above have been

formulated since 1968 in different theorems and for variant mechanisms by

several researchers. They have provided an indication for the probability of

better static stability by keeping the vertical projection of the center of mass at

the middle of support polygon. So that, they have designed the mobile robots

with big boundary of support polygon and low height of the center of mass.

1.2.2. Previous work on static stability

McGhee and Frank [32] were the first who introduced the idea of Static

Stability Margin criterion, based on an ideal insect locomotion system. They

defined it as the shortest horizontal distance from the vertical projection of the

center of gravity to the nearest border of the support pattern formed by the

contact points of legs with ground, called horizontal support polygon. If the

ideal machine is statically stable, the margin will be positive. Otherwise, it will

be negative. As shown in Figure 1.4, the black circle indicates for supported

16

leg and white circle indicates for not contacted legs with the ground. The

static stability margin of a. is positive, and of b. negative.

Figure 1.4.Top view shows the support polygon and pattern onto horizontal plane.

However, McGhee et al dealt with a rigid body with mass-less legs

moving in a straight line, on an even terrain, and in steady-state constant speed

locomotion. In addition, this criterion is geometric and independent of the

height of center of mass. Moreover, it does not encompass kinematic

configurations, dynamic effects or normal forces [30].

Messuri and Klein [33] proposed Energy Stability Margin for rough

terrain, which evaluates the minimum potential energy or work needed for

turning the center of mass of the mobile robot around the edge of the support

polygon. In other words, during the rotation of the center of mass on a circular

path around the edge, this criterion measures the vertical distance between the

maximum height of center of mass at a critical point above the edge and the

a. Statically Stable

4

b. Statically Unstable

L3

L2

L1

L4

L3

L2

L1

17

current height of center of mass multiplying with the weight of the mobile

robot as shown in Figure 1.5.

Figure 1.5. Energy Stability Margin

Nagy et al [34] extended the Energy Stability criterion to Compliant

Energy Stability Margin to overcome the foot sinkage on compliant terrain.

However, the stability margin, which takes into energy consideration, is an

inaccurate measure because it changes with respect to the weight of mobile

robot at the same posture, i.e. it maximizes the probability of stability for the

heavier robot at same posture. Hirose, et al [35][36] eliminated the effect of the

weight making the margin in dimensional-length expression by normalizing the

Energy Stability Margin to the weight of mobile robot.

However, the static stability does not deal with conditions when the rover

is subjected to the inertial forces and moments and ground normal forces [31].

NC

maxi
ESM = min (mg(h -h))

hmax
h

Horizontal Plane

hmax

L

18

Thus, the static stability can prove its functionality in the case of mass-less legs

with imposing limitations on rover’s motion by keeping it moves at slow and

constant speed to resist the inertial effect [37]. When the moving mobile robot

possesses considerable mass legs, the stability must be defined in the dynamic

approach. The current efforts of researchers have concentrated on the

confrontation of these dynamic effects that can restrict the stability of mobile

robots and mission performance during the motion on the base of dynamic

stability principle.

1.2.3. Dynamic stability margin

The mobile robot must meet the conditions for dynamic stability

throughout accelerated motion with taking into consideration the high effects

of the inertial forces and moments, dynamics disturbances from irregular

terrain, and variable normal and frictional forces. The dynamically stable rover

is considered faster than in the case of statically stable form. Support polygon,

legged configurations, center of mass projection, inertial forces and moments,

accelerated motion, frictional forces, and normal forces were traditionally

considered the main parameters for dynamic stability. As noted previously, the

dynamic stability provides more comprehensive definition as if the static study

is a part of dynamics. However, the rover may be dynamically stable without

19

being statically stable or vice versa, i.e. the moving bicycle is dynamically stable,

since it easy to remain upright and hard to flip during accelerated motion; and it

is statically unstable in the roll direction, since it cannot remain upright at rest

or slow motions.

1.2.4. Previous work on dynamic stability

Orin et al [38] provided the first dynamic stability margin called Center

of Pressure for a six-legged robot vehicle as an extension for center of mass

projection idea. This criterion states that a mobile robot is dynamically stable if

the projection of the center of mass along the direction of the resultant force

remains inside the boundaries of the support polygon.

Vukobratovic and his colleagues [39] proposed Zero Moment Point

criterion, which is helpful for biped locomotion only on an even and flat

terrain. In any way, this criterion claims the dynamically stability for the rover if

the ZMP remains inside the boundary of the support polygon. Zero Moment

Mass relies on the concept that states the sum of all forces and the sum of all

moments of the rover body on the support polygon are equal to zero.

20

Kang and his colleagues [40] proposed Effective Mass Center based on

Zero Moment Mass for a quadruped-walking robot subjected to external

forces. They have claimed that the effect of external forces on the real center of

mass yields deviation of ZMP from the real center of mass called effective mass

center. For finding the walking robot stability, this deviated point can be

considered as the real center of mass as if there are no external forces. Thus,

the dynamic stability of the quadruped robot can be conventionally found if

this point is located inside the support polygon. They attached force sensors to

each leg’s tip of the quadruped-walking robot in order to find the reaction

forces then directly in mathematical equation they substituted these values to

evaluate this deviation. However, this criterion is invalid in uneven terrain [31,

23].

Lin and Song [41] proposed Dynamic Stability Margin, which is defined

as the smallest of resultant moments around edges of axes of rotation, due to

normal forces, gravitational forces, and inertial forces and moment acting on

center of mass, normalized by the total weight of the system. The positive

moment explicitly counteracts the occurrence of instability otherwise the rover

21

will turn over. However as a result of normalizing the moment by weight; this

criterion implicitly conducts the unit of length that should remain positive.

Yoneda and Hirose [42, 23] proposed Tumble Stability Criterion for

mass-less legs. This criterion investigates for the mobile robot’s stability when

all legs become without contact with the ground except two legs forming two

ground contact points as a line segment, and the mobile robot will start to

tumble by rotating around the single line segment. They claimed that there

must be a supporting force for any non-contact point capable for overcoming

the tumbling. Furthermore, it evaluates the absolute value of the moment

around the rotation axis divided by its weight, which generates around the line

segment to withstand the tumbling. This stability criterion is evaluated not only

on ground surface, but also on wall and ceiling surfaces in which these surfaces

will provide the support forces for legs of the mobile robot. However, it does

not take into the consideration of dynamic effects of legged motions when the

legs are considerable masses.

Zhou [43] proposed Leg-End Supporting Moment, which is defined

similar as previous criteria as the leg-end supporting moment divided by the

22

weight of the mobile robot. If the moment is greater than zero, the mobile

robot will remain in stable state. They used the internal robot sensors for

finding forces and distances online to have precise measurements.

Papadopoulos and Rey [44, 45] proposed Force-Angle stability measure,

which evaluates minimum angle between the net force vector acting on the

center of mass and each of the tipover axis normals. The mobile robot is in

critical stability when this angle approaches to zero. The zero angle takes place

at the time the net force becomes coplanar with any tipover axis normals, or

when the net force becomes zero. This criterion shows that the mobile robot’s

instability takes place if the net force vector directs outside any one of tipover

axis normals. Therefore, this criterion takes geometric measure into

consideration, and it is sensitive to the effect of center of mass height, whereas

the raising of the center of mass height will minimize the probability of keeping

the mobile robot in stable situation. Furthermore, they claimed that it operates

on uneven terrain because the support pattern, formed by ground contact

points, is not restricted in a horizontal plane. However, Garcia [46, 47] proved

throughout experiments that this criterion has poor accuracy when

manipulation effects arise during walking over an uneven terrain.

23

Ghasempoor and Sepheri [48] proposed Dynamic Energy Stability

Margin. They take into consideration the dynamic effects to the Energy

Stability Margin including the inertial and normal forces that encountered

during the motion of the mobile robot on rugged terrain.

Garcia and Gonzalez [47] improved the Energy stability Margin to

Normalized Dynamic Energy Stability Margin for walking machines. This

criterion is defined as the smallest of the stability levels required to tumble the

robot around the support polygon, normalized to the robot weight.

Furthermore, it shows that the walking machines can remain dynamically stable

during motions under dynamic effects if each momentum around its edge of

support polygon, generated from robot-ground forces and moments, is positive

or in the clockwise direction. It is considered the optimal accuracy from the

energy point of view.

However, the stability conditions mentioned above are not adequate to

guarantee the safty for whole mobile robots from turnover. If optimum

criterion is defined, the robot manipulation and locomotion can also be

optimized. Beside, random surface types can be faced and it should be aware of

24

variable normal forces that can suddenly appear and effect on the rover

stability, because dynamic disturbances at the wheels generate large moment

about the platform link expressed in universal frame, tending to rotate the

mobile robot and losing its stability. The net moment that is capable for

rotating the rover, which is resulted from the normal forces acted at wheels,

gravity forces, inertial forces and torques exerted on the center of mass of each

link, must be decomposed, studied in on-line approach, and defined as

threshold limits. This requires on-line simulation for the changing occurred in

rover kinematics, dynamics, configurations, and attitude. Thus, this thesis

exhibits a new stability measure criterion that is sufficient for mobile robots in

different surface geometries and configurations: “If the universal moment

equals the critical moments, the rover will undergo to angular motion and lose

its stability”. The critical moment is the required moment to lose one side’s

connections with ground and rotate the rover about the opposite side. The

stability measure criterion will be evaluated under the dynamic stability

consideration for new-manufactured prototype composed of four wheeled-

legged manipulators and can be generalized and common used for whole

mechanical structured.

25

1.3. Computational kinematics and dynamics

The rigid multibody system only consists of rigid links connected by

actuators. To analyze and simulate the kinematics and dynamics of this system,

it is necessary to study the relative motion, torques, and forces between the

links. During the past researches on dynamics, the robotic system that consists

of relatively small numbers of joints was analyzed using graphical and hand

calculations. However, the mobile robot that consists of large number of joints

and carries variable load will negatively effect on the joint motions, in such a

way, the joint’s speed either decreases or increases along a planned path. The

dynamic characteristics for the manipulators are highly nonlinear system with

respect to the number of links. It is highly recommended to make the

calculation on-line, therefore it is required driving all its joints accurately and

frequently at a sampling frequency higher than 60 Hz [49] for the Stanford arm

[50], because the resonant frequency of most of the mechanical manipulators

are around 10 Hz [49, 51, 52]. The advent of high-speed computers and

computational methods has made it possible to analyze complex dynamic

systems.

26

The computation proves itself efficiently when the amount of

computation increases linearly with respect to the number of links, and the

sampling frequency is higher than 60 Hz.

The joint space equations of motion can be driven via different

approaches; i.e. Free Body Diagram, Lagrange equation, D’Alembert principle,

Newton-Euler formulation, Hamilton principle, Gibbs Appell formulation and

so on. The Free Body approach [53] is easiest approach for no more than two

links. It draws a free body diagram of a certain manipulator including: all

external forces by environment, weight exerted by the earth as attraction on the

center of gravity of the body, ground reactions on supports, as well as the

contact forces exerted by attached bodies on connections. However, the

computation for equations of motion will be arduous process for manipulator

with three or more links by using the Free Body diagram, because each link

must be described to its preceding link successively while the entire system of

free bodies is described in the frame work of “inertial coordinates” [49].

Therefore, the scientific researchers have focused the attention in development

of advanced approach capable for treating the daily development of robotic

mechanism and the increase of the number of links. The Lagrangian approach

27

[54] is an energy based formulation, since the equations of motion are firstly

obtained by finding the kinetic and potential energies of the system, and then

substituting these two results in Lagrange’s equation (L = T - V). The

Recursive Newton-Euler [55] is deal with kinematics and dynamics properties,

since the equations of motion are firstly obtained by propagating the velocities

and accelerations in forward recursion, and then propagating the input

generalized forces in backward recursion.

The equations of motion of robotic manipulator are typically computed

via applying either the Lagrange or the recursive Newton-Euler formulation. So

a lot of researches have extended new versions for the both approaches. The

comparison between two approaches can be inspired from computational

complexity, execution time, symbolic simplicity, numeric manner, and accurate

result. The Lagrange approach firstly consumed long execution time with

complexity O(n4) caused by Coriolis and Centrifugal force. Thus, the

approximation was an improvement technique by ignoring Coriolis and

Centrifugal forces and making the complexity reduced to O(n3) caused by

acceleration term. Armstrong [56] put forward the role of recursion in the

28

complexity reduction to O(n), and then a lot of researches have been relied on

him.

 In 1965, Uicker [54] was the first who introduced the Lagrange

equations with high complexity O(n4). Then in 1969, Kahn [57] extended it for

spatial open chain system using 4×4 homogeneous transformations with

computational complexity O(n3). After that in 1976, Stepanenko and

Vukobratovic [55] introduced the Newton-Euler equations for spatial open

chains where each component is referred to base inertial frame with

complexity O(n3). In addition in 1980, Luh, Walker and Paul [51] reduced the

complexity of the Newton-Euler Method to O(n) by using recursive

formulation, and considering each link’s dynamic referenced to its own link

coordinates or local coordinate system using 3×3 homogeneous

transformation. In 1980, Hollerback [58] extended the Kahn’s effort and

succeeded in reducing the complexity of Lagrange’s approach from O(n3) to

O(n) by using recursive formulation in Lagrang. However, Silver [59] in 1982

proved that there is no difference between what were developed in these two

approaches, Recursive Newton-Euler formulation and Lagrange approach.

29

The Lagrangian equations are considered most explicit for formulating

the equations of motion symbolically, whilst the Newton-Euler is considered

most efficient in formulating the dynamic equations numerically and

computationally [60]. For example in order to compute all input generalized

forces, the authors in [49] reduces the average execution time from 7.9 second

via Lagrange approach to 0.0335 second via Newton Euler Recursive

formulation using the same program and manipulators (FORTRAN program,

and a Stanford manipulator arm using six joints, seven links and a gripper).

However, the both approaches cannot be implemented practically on-line,

since the sample frequency is less than 60 Hz, until the author rewrote the

entire algorithm in assembly language and he reduced the time to 4.5

millisecond, therefore this execution time enable recursive Euler-Newton

formulation to be applied online.

Walker and Orin [61, 62] extended the work of Luh et al and made

application of the recursive Newton-Euler formulation explicit with less

execution time. They formulated the equations of motion in explicit form in

comparison with others; simply it will yield a set of recursive equations, which

can be applied to the links sequentially to compute the generalized forces

30

referenced in their own coordinates in a short period of time or in on-line

control. This is the approach which thesis will recommend and base in

calculations for computing the equation of motion.

In this work, the equations of motion are driven by using Newton-Euler

Recursive Formulations. The kinematics of links (velocities and accelerations)

are propagated in forward recursion started from base frame and ending at the

four end-effectors, link by link. As well as, the dynamics of links (generalized

forces and moments) are propagated in backward recursion started from four

end-effectors frame and ending at base frame, link by link. The rover base is a

driven link, and it moves as a result on the configurations of the four

manipulators and ground elevation. However, The Newton-Euler Recursive

Formulations were formulated and applied for various fixed robotic

manufactures as Puma 560, Elbow, and Standford manipulators; where the

main platform of the pervious systems is fastened with stationary pillar without

being under motion and its coordinate frame is considered as universal frame.

The utilization of the Newton-Euler Recursive Formulations directly is

incorrect in regarding to mobile robot without taking the platform motion into

account. The platform attitudes (roll, pitch, and yaw) with respect to the

31

universal frame will also be taken into account as a function of rover

configurations and surface geometries. In addition, the kinematic values

(position, velocity, and acceleration) of the platform link will be compensated

in equations of motion with respect the kinematics of wheels.

However, the previous works have considered the whole components of

mobile robot as rigid body concentrated in center of mass. But, this work dealt

with the kinematics and dynamics of each link apart, and relate between links in

recursive approach, which can be applied to the links sequentially to compute

the kinematics and dynamics referenced in their own coordinates in a short

period of time and in on-line control.

This work exploits Denavit-Hartenburg convention to assign the

coordinate frames. Besides, homogeneous transformation matrix will relate

between each two adjacent coordinate frames starting from base and ending at

four end-effectors. Moreover, forward kinematics will directly relate the base

frame to the end-effectors. Plus, the roll, pitch and yaw angles are unknown

variables and they are functions of system configurations and ground

geometries. As well as, The homogeneous transformations of surface frame

32

(contact point) with respect to wheel frame of each end-effector will also be

computed as functions of joint configurations and ground geometries.

Because four legs are considered indeterminate system, in this thesis the

normal forces are evaluated for three contact legs in the case the non-

symmetric rover. However, in the case of symmetric configurations the normal

forces are distributed equally between the sides which sharing the same the

inertial forces, ground geometries, and platform attitude. Thus, regarding to

four legs the normal forces are evaluated by considering each two legs sharing

the same value.

A new dynamic stability criterion is presented and operating arbitrary on

various shapes of surfaces, and variable rover configurations. In addition, this

criterion provides on-line calculations for the effect of rover configurations,

various surface geometries, platform attitudes, kinematic values, dynamic

effects, and variable ground normal forces.

33

Chapter Two

2. Kinematics of the rover

In this chapter the coordinate frames will be assigned by using Denavit-

Hartenburg convention “DH”, and then DH parameters will be specified

between each two adjacent frames. Besides, this chapter will relate between

each two adjacent coordinate frames using homogeneous transformation

matrix starting from base and ending at end-effectors. Moreover, we will

directly relate the base frame to the end-effectors throughout a forward

kinematics. The forward kinematics provides us the position and the

orientation of the end-effectors with respect to the base frame as a function of

joint configurations. After all, the platform attitude will be specified with

respect to universal frame through roll, pitch, and yaw orientations. However,

the roll, pitch and yaw angles are unknown variables and they are functions of

system configurations and ground geometries. Therefore, we will integrate the

work mentioned above for finding the attitude angles.

34

The homogeneous transformations of surface frame (contact point) with

respect to wheel frame of each end-effector will also be computed as functions

of joint configurations and ground geometries.

The homogeneous transformation of the ground universal frame with

respect to the platform universal frame will also be computed as functions of

joint configurations and ground geometries too.

2.1. Coordinate frames

This work considers a reconfigurable rover. The rover has four legs, and

each leg consists of five links connected through four revolute joints. The first

step is to return the leg to home position where all joint angles are set to home

position values. Coordinate frames are assigned according to the DH

convention. The joints are labeled as i= 1 to 4, and links’ end-terminal are

labeled with a frame number Oi (i= 0 to 4) starting from O0 as base frame

(platform) to O4 as an end-effector frame (wheel). The joint axes zi are assigned

along the axes of rotation as show in Figure 2.1:

35

Figure 2.1. Joint axes assignments and frame numbering for the Rover.

Based on joint axes shown in Figure 2.1, we complete the three

orthonormal coordinate systems (xi, yi, zi). For parallel joint axes, zi×zi-1=0, xi

axis is assigned along the common perpendicular in the line directed from

frame Oi-1 to Oi, and for intersecting joint axes, xi axis is perpendicular to the

plane or parallel to the vector cross product ±zi-1×zi as shown in Figure 2.2:

i = 2

O2

z1

Base Frame

i =3

O4

O3

O1
O0

z2

z3

z0

i = 1

i = 4

End-effector Frame

link 0

36

Figure 2.2. xi-axis setting up. a. In parallel joint axis, xi axis is in the line directed from
frame Oi-1 to Oi. b. In intersecting joint axis, xi axis is perpendicular to the plane or
parallel to the vector cross product ±zi-1×zi.

The yi-axis is defined in the direction needed to complete a right-handed

orthonormal coordinate frame (xi, yi, zi).

x1 is perpendicular to the plane containing the two intersecting axes z0

and z1. Then x0 is to align with x1 (of course in home position). x2 is also

perpendicular to the plane containing the two intersecting axes z1 and z2 in

similar way in assigning the x1. Finally because z3×z2=0, x3 is to be assigned

along the common perpendicular between the z2 and the z3 axes. These

procedures will be commonly repeated for the four wheeled-legged

manipulators.

a. b.

Oi

Oi-1

xizi

zi-1

Oi-1

xi

zi

zi-1
Oi

37

For the coordinate frame of End-effector link (x4, y4, z4), z4 is assigned

in parallel to z3. x4 is assigned along the common perpendicular between the z3

and z4. y4 assignment is based on the right hand coordinate frame. The

coordinate systems (xi, yi, zi), i=0…4, from the base frame to the end-effector

frame are shown in Figure 2.3:

Figure 2.3. Assignments of coordinate frame on the form of home position.

The coordinate system (xi, yi, zi) for i =1,2,3,4 is assigned at the end-

terminal of link i and hence it moves with link i, and zi represents the motion

of link i+1. The system (x0, y0, z0) is assigned at link 0, the platform center, and

hence it moves with platform, and z0 represent the motion of link 1.

z3

z0
y1

z1

O4

O3

x3, x4

O1

O0

O2

z2

x1, x2

x0

z4

y0

y2

y3, y4

38

2.2. Denavit-Hartenburg parameters

So far, we have completed the designation of coordinate frames.

Currently, we need to describe the kinematics of the robot by describing the

position and orientation of each link with respect to the previous link using

DH approach. In a simple manner, each pair of successive joints is

characterized by a link length between joint axes a, a twisted angle between

joint axes α , a link offset d, and a joint angle θ . The description for these four

parameters can be given as follows: joint angle, iθ , is a rotating angle between

the xi-1 and xi axes about zi-1 axis. Link offset, di, is a translating distance from

xi-1 and xi along zi-1. Link length, ai, is a translating distance from zi-1 and zi

along the xi. Finally, twisted angle, iα , is a rotating angle between zi-1 and zi axis

about xi axis. See Appendix A.

Applying the notations of DH parameters for one manipulator and for

each adjacent joints starting from base frame O0 to end-effector frame O4 as in

Figure 2.4:

39

Figure 2.4. Pairs of two adjacent links.

o

o

0α

aa
0d

180θq

3ilink

i

3i

i

3i

=

=
=

+=

=

z4

O4

a4

y4

x4

z3

O3
y3

x3
4θ

x2

z3

O3

O2

z2

a3

y2

y3

x3

3θ

o0α

aa
0d
θq
4ilink

i

4i

i

4i

=

=
=
=
=

o90α

0a
dd
θq
1ilink

i

i

1i

1i

−=

=
=
=
=

z1

z0
y1 O1

O0 x1

x0

d1

y0
1θ

o90α

0a
0d
θq
2ilink

i

i

i

2i

=

=
=
=
=

y1

z1

O1

x1

x2

O2

z2

2θ

40

Filling the table up with DH parameters, we obtain:

Table 2.1. Kinematic parameters table based on DH convention.

Link Joint type Variable Link offset
d

Link length
a

Twist angle

α

1(0-1) revolute θ 1 d1 0 -90

2(1-2) revolute θ 2 0 0 90

3(2-3) revolute θ 3+180 0 a3 0

4(3-4) revolute θ 4 0 a4 0

Since the rover has revolute joints only, all generalized coordinate

variables are rotational angles about their own rotational axes. The generalized

coordinates, (qi = iθ , i=1,…,4), describes the motion in four-dimensional

vector of each legged manipulator.

 []T4321i θθθθq = (2.1)

The notations of generalized coordinates will match joint velocities and

joint accelerations, respectively, as follows in equations 2.2 and 2.3:

 []T4321i θθθθq &&&&& = (2.2)

 []T4321i θθθθq &&&&&&&&&& = (2.3)

41

These velocities and accelerations will be transformed forward later in

Chapter 3 using Newton-Euler Recursive Relations.

2.3. Homogeneous transformation:

The adjacent frames are related with each other through the use 4×4

homogeneous transformation matrix, A, which represents the orientation and

position of the coordinate system Oi relative to Oi-1. The 1i
iA − transformations

for the rover using DH convention are given as follows:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

1000
d010
0C0S
0S0C

A
1

11

11

0
1 (2.4)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

1000
0010
0C0S
0S0C

A 22

22

1
2 (2.5)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−−
−−

=

1000
0100

Sa0CS
Ca0SC

A 3333

3333

2
3 (2.6)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
0100
Sa0CS
Ca0SC

A 4444

4444

3
4 (2.7)

42

For simplicity, the notations are employed to abbreviate the cosine, sine

and related trigonometric formula as follows:

()
() jijijiiJ

jijijiiJ

ii

ii

SθSθCθCθθθCC
SθCθCθSθθθSS

cosθC
sinθS

−=+=

+=+=
=
=

2.4. Forward kinematics

The forward kinematics is to find the position and the orientation of the

end-effector relative to base frame if the angles of joints and geometric

parameters of manipulator links are given. Mathematically, it is a chain product

of successive homogeneous transformations moving forward from the base

frame out to the end-effector frame.

0 0 1 2 3
4 1 2 3 4A A A A A= ⋅ ⋅ ⋅

1 1 2 2 3 3 3 3 4 4 4 4

1 1 2 2 3 3 3 3 4 4 4 4

1

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 d 0 1 0 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

C S C S C S a C C S a C

S C S C S C a S S C a S

− − − −

− − − −
⋅ ⋅ ⋅

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−−−
−−−

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

1000
0100

SaSa0CS
CaCa0SC

1000
dC0S
0SSCCS
0SCSCC

333443434

333443434

122

21121

21121

43

1 2 34 1 34 1 2 34 1 34 1 2 1 2 4 34 3 3 1 4 34 3 3

1 2 34 1 34 1 2 34 1 34 1 2 1 2 4 34 3 3 1 4 34 3 3

2 34 2 34 2 2 4 34 3 1

C C C S S C C S S C C S C C (a C a C) S (a S a S)
S C C C S S C S C C S S S C (a C a C) C (a S a S)

S C S S C S (a C a C) d3
0 0 0 1

− + + − + + +⎡ ⎤
⎢ ⎥− − − − + − +⎢ ⎥= ⎢ ⎥− + +
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.8)

The above equation, which describes the posture of the rover, is a

function of joint variables, in which they were transformed into a Cartesian

frame relatively to base frame. In other words, the computed matrix 0
4A can be

considered generalized matrix 0
4B providing 3×3 orientation matrix and 3×1

position vector of the last frame O4 with respect to the base frame O0. The

orientation matrix describes the approach vector a, the orientation vector o, the

normal vector n. The position vector, p, is the position of the end-effector with

respect to base frame.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
paon
paon
paon

B
zzzz

yyyy

xxxx

0
4 (2.9)

In order to reduce the amount of computations, the first column of 0
4B

may be obtained as the vector cross product of the second and third columns

aon ×= (2.10)

44

The position vector from the platform’s base frame to the wheel frame

is the fourth column of equation 2.8; we obtain equation 2.11 which can be

denoted in Figure 2.5

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
+−+−
+++−

=

1333442

3334413334421

3334413334421
0
4

d)CaC(aS
)SaS(aC)CaC(aCS
)SaS(aS)CaC(aCC

r (2.11)

Figure 2.5. Position vector from base to end-effector frame.

z4

y4

O0

O4

z0

x0

y0

x4

0
4r

45

2.5. Base frame

Our mobile platform is a base link connected to a differential gear joint.

Each end-terminal of this differential gear is connected with another link as

shown in Figure 2.6.

Figure 2.6. Differential gear joint

There are two base frames attached on the differential gear joint, i.e. O0L

and O0R, and they are located in the central platform as shown in Figure 2.7.

Figure 2.7. Two frames attached at the base link.

From the rider's point of view, z0R is the right lateral axis and z0L is the

left lateral axis, y0R is the front longitudinal axis in the direction of travel and

y0L is the rear longitudinal axis, finally x0R and x0L are axes running as one axis

vertically with respect to the platform plane.

O0R
O0L

y0L

z0L

z0R

y0R

x0R
x0L

z0L
L1θ

R1θ z0R

46

The homogeneous transformation, from right base frame to left base

frame, is simply rotation about x0R axis by ±180 degree. See Figure 2.7.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

1000
0100
0010
0001

A R0
L0 (2.12)

The homogeneous transformation, from left base frame to right base

frame, is also equal the transformation matrix from right to left base frame; that

is simply rotation about x0L by ±180 degree.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

1000
0100
0010
0001

A L0
R0 (2.13)

47

2.6. Platform frame

However, we can choose one of the two base frames as platform frame

for simplicity. In this work, we referred the right base frame as platform frame.

Applying the above rules and procedures on the four legs as shown in

transformation graphs in Figure 2.8, it shows the homogeneous

transformations between two adjacent links. Besides, the forward kinematics

transformations from the platform frame to the four wheel frames of the four

legs can be obtains respectively as,

Forward kinematics for right front leg:

RF3
RF4

R2
RF3

R1
R2

R0
R1

R0
RF4 AAAAA ⋅⋅⋅= (2.14)

Forward kinematics for right rear leg:

RR3
RR4

R2
RR3

R1
R2

R0
R1

R0
RR4 AAAAA ⋅⋅⋅= (2.15)

Forward kinematics for left front leg:

LF3
LF4

L2
LF3

L1
L2

L0
L1

R0
L0

R0
LF4 AAAAAA ⋅⋅⋅= ⋅ (2.16)

Forward kinematics for left rear leg:

LR3
LR4

L2
LR3

L1
L2

L0
L1

R0
L0

R0
LR4 AAAAAA ⋅⋅⋅⋅= (2.17)

48

Figure 2.8. Transform graph for the four legs, starting from platform frame to end-
effector frame.

Figure 2.9. The frames for the four legs,

O2L

O4LR
O3LR

O3RF

O4LF

O3LF

O0L

O1L

O0R

O1R O2R

O4RF

O3RR

O4RR

O2L

O4LRO4LF

O3LF

O0L

O1L

O3LR

O2R

O4RF

O0R

O1R

O4RR

 O3RR

R0
R1A

RF3
RF4A RR3

RR4A

L0
L1A

LF3
LF4A LR3

LR4A

1L
2LA 1R

2RA

2L
3LFA 2L

3LRA 2R
3RFA 2R

3RRA

R0
L0A

O3RF

49

2.7. Wheel kinematics

Kinematics of the wheel is a study concerned with describing the way in

which the wheel moves. In this thesis, the wheels are only employed as driven

links for the purpose of locomotive propulsion. In the presence of driven

system, each wheel has only one rotational degree of freedom in term of

angular variable. The rotational motion of the rigid wheel occurs about a rolling

axis z3 by angle value 4θ . The rolling axis is simply a line axis going

perpendicularly through the center of the wheel. The translational motion of

the rigid wheel occurs on the ground and in a straight line. The mechanical

purposes of the wheel link and the wheel angle can be described under two

factors; manipulation and locomotion:

− Manipulation factor:

In the case of manipulation purposes, the wheel end-effector frame is

simply a touch point with surface. It is denoted with O4 (x4, y4, z4) and is

setting up as follows: x4 axis is normal to the rim of wheel; y4 axis is in tangent

direction of the rim of wheel; and z4 axis is directed perpendicularly to wheel

plane. See Figure 2.10 which shows three selected points (P1, P2, and P3) on the

rim of wheel.

50

Figure 2.10. The coordinate frame of manipulated wheel.

The position vector of contact point O4 with respect to base frame O0 is

dependent on the configurations of rover (1 2 3 4θ ,θ ,θ ,θ). The manipulated

variable 4θ is simply arc angle which is rotating about x3 axis is dependent on

differential joint angle 1θ , shoulder joint angle 3θ , pitch angle θ , and surface

geometry 3β . These factors will be explained in coming sections.

The manipulation angle 4θ (arc angle value) is considered in the

following calculations:

1. Roll angle ()φ .

2. Forward kinematics: the orientation matrix and position vector of the

manipulated links with respect to base frame must treat 4θ .

3. Inverse kinematics.

P2

P1

y4

x4

x4

y4

x4

y4

P3

51

− Locomotion factor:

In locomotion purposes, the wheel is considered as driven link with 4θ

which in turn is considered the angle of wheel rotation generated from motor

torque. The angular acceleration of the wheel can be evaluated as,

t 4
4

4

vθ a=
&&& (2.18)

Then in general, the kinematic equations of the rotational wheel are

determined under assumed constant angular acceleration 4θ&& as follows

tθθθ 40,44
&&&& += (2.19)

2
40,4,044 tθ2

1tθθθ &&& ++= (2.20)

The travel length of wheel movements on ground is directly

proportional to generalized joint coordinate of wheel link 4θ and the radius of

wheel a4.

Figure 2.11. Wheel angular movement tracked linearly on ground.

P2

a4

44θa

P1

P1

P2

4θ
vt4

52

wheel travel length = 44θa (2.21)

The locomotive angle 4θ (rotation angle value) is considered in these

calculations:

1. Linear displacement, velocity, and acceleration of wheel tracked linearly

on the ground.

2. Linear displacement, velocity and acceleration of platform frame with

respect to universal frame expressed in universal frame, i.e. U
Uv and U

Uv&

respectively.

3. Generalized coordinates of angular displacement, velocity and

acceleration)q,q,(q 444 &&& those are substituted in forward recursion.

4. In addition, yaw angle ψ resulted from variance of wheels’ velocities.

53

2.8. Platform kinematics

The above mentioned can be extended by including a coordination

between the locomotion and manipulation. Each two legged manipulators on

both sides of the rover are locomoted by two wheels at same velocity.

However, each side is locomoted at different velocity relatively to the opposite

side. These differences in velocities between two opposite sides will rotate the

faster side around the slower side, and in result these will rotate the entire rover

about the yaw axis xU.

The rover moves in forward and backward direction according to the

fixed rotation of the wheels on ground, and rotates on right and left direction

according to the difference of wheels’ velocities. Thus, we will define the

relationship between the angular velocity of the wheels and the travel path of

the vehicle body on the ground. In addition, we will coordinate the processes

of locomotion with manipulation expressed in the universal frame.

We will make our calculations dependent on the contact wheels with

ground. Moreover, we will choose kinematic values of one wheel from each

54

side, i.e. R4θ and L4θ , even if the all wheels are in contact with ground. On the

right side R4θ rotates about z3R, and on the left side L4θ rotates about z3L in

term of counter clock wise direction. However z3L has inverse direction

relatively to z3R as shown in Figure 2.12. z3L can be transformed to be pointing

to the direction of z3R by multiplying L4θ by negative sign.

In order for moving forward, it is required to manipulate the

configurations of the wheels in adequate angles and direction. R4θ must rotate

in counter clockwise direction in positive valued and L4θ must rotate in

clockwise direction in negative value as shown in the following Figure 2.12

Figure 2.12. Two opposite wheels enabling the rover for rotating forward, the arc length
of the wheel is tracked on ground, from start to finish of the travel.

Bdz3R

z3R

Rd

ψ

A
B

2d1

R4θ L4θ

R4θ

L4θ

z3L

z3L

Ld

55

Therefore, the travel path of right wheel and left wheel on ground can

be obtained respectively as

Rd = 4 4Ra θ⋅ (2.22)

Ld = 4 4La θ⋅ (2.23)

The rover travel is generated from the linear movement of wheels on the

ground. The travel path of the rover body is the average of the travel lengths of

right and left wheels.

R L 4 4R 4 4L
B

(d d) a θ a θd 2 2
+ ⋅ + ⋅

= = (2.24)

The instantaneous linear velocity of the wheels is equal the derivation of

travel path with respect to time, or in other words, the rate of change in the

travel path with respect to time.

R4tv = 4 4Ra θ⋅ & (2.25)

tLRv = 4 4La θ⋅ & (2.26)

The robot's velocity is the rate of change in the robot's position with

respect to time. Thus, linear velocity of robot body is rate of change of the

average of the wheeled travel lengths with respect to time.

56

4 4R 4 4L
B

a θ a θv 2
⋅ + ⋅

=
& &

 (2.27)

The linear acceleration of the wheel is the rate of change of the velocity

of the wheel with respect to time

R4tv& = 4 4Ra θ⋅&& (2.28)

tLRv& = 4 4La θ⋅&& (2.29)

The robot's acceleration is the rate of change in the robot's velocity with

respect to time

4 4R 4 4L
B

a θ a θv 2
⋅ + ⋅

=
&& &&

& (2.30)

In any way, the rover motion on the non-flat surface and the links

motions about their joint axes yield a change in the orientations of the platform

frame. This different platform’s attitude will be referred with respect to the

universal frame. Both universal frame and platform frame have same origin on

the center of platform (no translation), but different orientations as shown in

Figure 2.8. These orientations can be described in different techniques, e.g. Roll

Pitch and Yaw, Euler Angle representation, or Directional Cosine

representation. This work chose Roll, Pitch and Yaw method.

57

2.9. Platform universal frame

The rover motions are referred with respect to right-hand orthogonal

coordinate frame, called the universal frame OU (xU, yU, zU). In other words,

the coordinate frames and equations of motion of each link are considered with

respect to. It is located at the center of platform forming the horizontal plane,

yU-zU, parallel to ground plane, and xU axis is normal to ground plane directed

upward as shown in Figure 2.13.

The Orientations are measured from the attitude of the body in three

dimensions (Roll, Pitch and Yaw). These independent motions cause three

rotational degrees-of-freedom as shown in Figure 2.13. In our case, zero

translation is between the two frames. The body’s attitude, which is referred

about the universal frame, can be broken down into: roll corresponds to a

rotation φ about the longitudinal yU-axis, pitch corresponds to a rotation θ

about the lateral zU-axis and yaw corresponds to a rotation ψ about the normal

xU-axis. As supposed the sequential order of rotations is as following:

• Rotation of ψ about xU-axis.

• Rotation of θ about zU-axis.

• Rotation of φ about yU-axis.

58

Figure 2.13. Body attitude provides three rotational degrees-of-freedom (φ ,θ ,ψ),
assuming congruent frames for platform and universal frame at the beginning.

In simpler manner, any 3-Dimensional rotation is conventionally defined

as a rotation in 2-Dimensional counter-clockwise direction along positive axis

of rotation. So firstly we specify the axes of rotations about universal frame,

and secondly the rotation angles in radian as shown in Figure 2.14:

Figure 2.14. Roll motions about yU axis by φ angle, Pitch motions about zU axis by θ
angle, and Yaw motions about xU axis by ψ angle.

Yaw (ψ) Pitch (θ)

y0

yU

zU, z0

xU y0

θ

θ

xU, x0

y0

z0

yU

zU

ψ

ψ

Roll (φ)

xU

z0

yU, y0

zU

x0

φ

φ

θ

Ou

zU

xU

ψ

yU

φ

59

These series of body’s rotations, around the universal frame, can be

described in three matrices. Moreover, these matrices can be combined by

multiplications with each other orderly as follows:

U
R0A = RPY(φ ,θ ,ψ) = Rot (yU, φ) Rot(zU, θ) Rot(xU, ψ)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

= −
⋅

−

⋅
−

1000
0cossin0
0sincos0
0001

1000
0100
00cossin
00sincos

1000
0cos0sin
0010
0sin0cos

ψψ
ψψθθ

θθ

φφ

φφ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−+−
−

++−

=

1000
0ccssssccsscs
0scccs
0cssscsscsccc

ψφψθφψφψθφθφ
ψθψθθ

ψφψθφψφψθφθφ

 (2.31)

U
R0A is a homogeneous transformation from the universal frame OU to

the body frame O0R. These three attitude angles can be generated as a result of

influences of geometric configurations of the manipulators and ground

geometries. However, the order of rotations is an important, which means it is

not commutative. Thus, the sequential order of rotations is not a matter of

suppositions, but it is definitely subjected to the orders of sudden changes in

ground geometries and joint configurations that will cause platform’s

orientations.

60

If the platform is congruent to a universal base frame, the homogeneous

transformation from the universal frame OU to the body frame O0R will be

unity matrix:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0100
0010
0001

AU
R0 (2.32)

The homogeneous transformation between universal and left base frame

is post-multiplying U
R0A by R0

L0A

R0
L0

U
R0

U
L0 AAA ⋅=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−

−−−

=

1000
0ccssssccsscs
0scccs
0cssscsscsccc

ψφψθφψφψθφθφ
ψθψθθ

ψφψθφψφψθφθφ

 (2.33)

Figure 2.15. Transform graph of universal frame and two bases frames.

O0L O0R

OU

U
R0AU

L0A

61

Figure 2.16. The transform graph of rover frames.

x3RF

x3RR

x4RF

L1
L2A

z3RF

x4LF

y4LF
z4LF

z3LF

x3LF

y3LF

x1L

z1Ly1L

xU

yU

zU

y3RF

x1R

z1R
y1R

x0R
y0R

z0R

x2L

y2L

z2L

y4RFz4RF

y2R

y3RR

z3RR

x4RR

y4RR
z4RR

z0L

x0L

y0L

z2R

x2R

z3LR

x3LR

y3LR

y4LR

x4LR

z4LR

U
R0A

R2
RF3A

RF3
RF4A

RF4
UA

R0
R1A

L0
L1A

U
L0A

R1
R2A

RR3
RR4A

L2
LF3A

LF3
LF4A

L2
LR3A

LR3
LR4A

LF4
UA

RR4
UA

LR4
UA

R2
RR3A

62

2.9.1. Attitude angles

The previous roll, pitch, and yaw angles of platform frame with respect

to universal frame are influenced by joint configurations of the manipulators

and geometric ground input systems. The geometric configurations of the

manipulators are function of joint variables (1 2 3 4θ ,θ ,θ ,θ) that formulate the

rover posture. 4θ must be taken into accounts that where it must be treated as

manipulation purpose or locomotive purpose. The ground input systems are

functions of altitudes from ground universal level to wheeled-ground contact

points.

The calculation of stability measure must meet conditions required when

at least three legs are in contact with the ground surface all the time.

Meanwhile, one supported leg from each side (one from left side and the

second from right side) is enough for covering the required calculations as

shown in Figure 2.17.

63

Figure 2.17. The geometric configurations and ground input Systems relative to the two

legged manipulators.

The robot remains stable with three supported legs on ground while the

fourth leg remains without contact. One supported leg from each side is

chosen for our computations and we will remark it by K. K is stands for the

chosen leg and it is either front leg or rear leg under conditions of connectivity

with ground as shown bellow

⎩
⎨
⎧

•
••

=
)(R&)if(FR;

)(R|)if(FF;
K

aoa

aa

•aleg means that the leg is in contact with ground.

Ground Universal Level

xG

zG

y0

zU

yU

yG

z0

x0

OU

xU

Joint
Configurations

Ground Input
Systems.

64

oaleg means that the leg is not in contact with ground.

As explained in this example: assume right front leg is on air without

contact with ground as shown in the following Figure 2.18

Figure 2.18. The black circle indicates for supported legs and white circle indicates for
not supported legs with the ground.

On right side, the front leg is denoted with RK; and on the left side, the

rear leg is represented with LK.

Leg LF

Leg LR

Leg RF

Leg RR

K=Rear K= Front

65

2.9.1.1 Pitch angle

Pitch angle corresponds to a rotation of the platform by θ about the

lateral zU axis as a result of differential joint rotation, rover configurations and

surface geometries. z0R axis and zU axis are contingent and pointing toward the

right lateral side of the platform. z0L axis is in opposite direction of zU axis

pointing toward the left lateral side.

The pitch angle is firstly resulted from the difference average between

the angle of right rotary link R1θ and the angle of left rotary link L1θ as shown

in Figure 2.19:

(1) 1R 1Lθ θ
2

θ −
= (2.34)

Figure 2.19. Pitch angle.

zU, z0R

L1θ

R1θ
Differential joint

z0L

θ

66

θ is valued a positive angle about zU-axis, when the platform rotates in

counter-clock wise direction, or on other word, when R1θ is positively greater

than L1θ .

2.9.1.2

2.9.1.3

2.9.1.4

2.9.1.5

2.9.1.6

2.9.1.7

2.9.1.8

Figure 2.20. Rotation about lateral axis of universal frame by θ .

xU

yU

y0R

x0R
θ

R1θ

L1θ

θ

θ

67

Figure 2.21. Elevation difference

And secondly it resulted from the elevation difference between the front

and rear legs and rover configurations. Applying Pythagorean relations, the

trigonometric sine function is

() ()
() ()

U U

0 R 0 R

G G
4RR 4RFx x(2)
0R 0R
4RR 4RFy y

r r
sin

r r
θ

−
=

−

() ()
() ()

U U

0 R 0 R

G G
4RR 4RFx x(2) 1
0R 0R
4RR 4RFy y

r r
= sin

r r
θ −

⎛ ⎞−
⎜ ⎟
⎜ ⎟−
⎝ ⎠

 (2.35)

Where,

y0R

x0R

O0R

GCPO4RR

OU
yU

O4RF

GCP

xU

()
UX

RR4
Gr

xG

yG OG
Ground

Reference

()
UX

RF4
Gr

(2)θ

68

()0R
4RR 1R 2R 4 34RF 3 3RF 1R 4 34RF 3 3RFy0R

r = S C (a C + a C) C (a S + a S)− − (2.36)

()0R
4RR 1R 2R 4 34RR 3 3RR 1R 4 34RR 3 3RRy0R

r = S C (a C a C) C (a S a S)− + − + (2.37)

Finally the pitch angle is equal to

(1) (2)θ θ θ= + (2.38)

69

2.9.1.2 Roll angle

The roll angle corresponds to a rotation of the platform by φ about the

longitudinal yU axis. y0R axis and yU axis will be contingent and pointing toward

the front longitudinal view of the platform if and only if the rover is

manipulated at symmetric configurations and moving on flat surface:

Figure 2.22. Front view shows the platform rotating about longitudinal axis of universal
frame byφ . y0-axis and yU-axis are pointing out of paper.

GCP

GCP

OU

O4LK

O1L

O4RK

O1R

LCF altitude RCF altitude

RKIS LKIS

zU

xG

zG

xU

OG

70

The wheel frame O4RK is assigned at the contact point located as an end-

effector where θβ −+−−= RK3R1RK4 θθθ . The roll angle about yU axis is

computed by using Pythagorean relations; the opposite side is the altitude

difference between the RCF and LCF altitudes; the hypotenuse side is the

lateral length of the platform.

Figure 2.23. Pythagorean relations.

The trigonometric sine function is

lengthlateralplatform
altitudeLCFaltitudeRCFsin −

=φ (2.39)

Where,

RCF altitude = ()
Ux

R1
G

U r

LCF altitude = ()
Ux

L1
G

U r

Platform lateral length = 2d1

φ
Altitude difference

Platform
lateral length

LCF altitude

RCF altitude

71

φ is valued a positive angle about yU axis, when the platform rotates in counter-

clockwise direction, or on other words, when the RCF altitude is higher than

the LCF altitude.

− Right conjunctional Altitude:

Mathematically, the altitude from O1R to ground frame OG is equal the

summation of the altitude from O1R to O4RK, and the altitude from O4RK to

ground frame OG

() () ()
() () ()

UUU

UUU

x
RK4

Gx
U
R1x

U
RK4

x
RK4

Gx
R1
RK4x

R1
G

rrr

rrr

+−=

+=
 (2.40)

These calculations have to be referred to universal frame as shown in Figure

2.24:

72

Figure 2.24. The altitude of RCF O1R to ground frame OG

The mathematical subtraction of U
RK4r and U

R1r will provide us ()UR1
RK4r ,

where ()
Ux

U
R1r is the first row and fourth column of the homogeneous

transformation matrix of frame O1R with respect to universal frame OU

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

⋅=

=

1000
d010
0C0S
0S0C

1000
0cos0sin
0010
0sin0cos

AAA

1

R1R1

R1R1

R0
R1

U
R0

U
R1

φφ

φφ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

=

1000
cosdSsincosCsin
0C0S
sindScossinCcos

1R1R1

R1R1

1R1R1

φφφφ

φφφφ

 (2.41)

OU, O0R

zU

O4RK

O1R

OG
Ground

Reference

U
R1r

()
UX

RK4
Gr

()
UX

R1
RK4r

xU

xG

()
UX

R1
GrR1

Gr

zG

U
RK4r

()
UX

U
R1r

()
UX

U
RK4r

()UR1
RK4r

73

Thus,

() φsindr 1x
U
R1 U

= (2.42)

And ()
Ux

U
RK4r is the first row and fourth column of homogeneous

transformation matrix from universal frame OU to end-effector frame O4RK,

() ()
()1RK33RK344R2

RK33RK344R1RK33RK344R2R1x
U
RK4

d)CaC(aSsin

)SaS(aS)CaC(aCCcosr
U

++⋅

++++−⋅=

φ

φ
 (2.43)

Finally as mentioned,

() ()

() ()
U

U

x
RK4

GRK33RK344R2

RK33RK344R1RK33RK344R2R1x
R1

G

r)CaC(aSsin

)SaS(aS)CaC(aCCcosr

++⋅

++++−⋅=

φ

φ
 (2.44)

74

− Left conjunctional Altitude

Mathematically, The altitude from frame O1R to frame OG is

mathematical summation of xU-component of position vectors from LCP

frame O1L to GCP, ()
Ux

L1
LK4r , and system input from GCP to ground frame,

()
Ux

LK4
Gr :

() () ()
() () ()

UUU

UUU

x
LK4

Gx
U
L1x

U
LK4

x
LK4

Gx
L1
LK4x

L1
G

rrr

rrr

+−=

+=
 (2.45)

Where, mathematical vectors subtraction of U
LK4r and U

L1r will provide us

()UL1
LK4r ; U

L1r is the fourth column of the homogeneous transformation matrix of

frame O1L with respect to universal frame OU:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⋅⋅=

1000
cosdSsincosCsin
0C0S
sindScossinCcos

1000
d010
0C0S
0S0C

1000
0100
0010
0001

1000
0cos0sin
0010
0sin0cos

AAAA

1L1L1

L1L1

1L1L1

1

L1L1

L1L1

L0
L1

R0
L0

U
R0

U
L1

φφφφ

φφφφ

φφ

φφ

 (2.46)

75

Thus,

() φsindr 1x
U
L1 U

−= (2.47)

Figure 2.25. Coordinate frames of OU, O0R, O0L and O1L

And ()
Ux

U
LK4r is the first row and fourth column of homogeneous

transformation matrix from frame OU to end-effector frame O4LK,.

() ()
()1LK33LK344L2

LK33LK344L1LK33LK344L2L1x
U
LK4

d)CaC(aSsin

)SaS(aS)CaC(aCCcosr
U

++⋅

−+++−⋅=

φ

φ
 (2.48)

Finally,

() ()

() ()
U

U

x
LK4

GLK33LK344L2

LK33LK344L1LK33LK344L2L1x
L1

G

r

r

)(

)

CaCaSsin

SaS(aS)CaC(aCCcos

++⋅

−++−⋅ +=

φ

φ
 (2.49)

The roll angle about yU-axis can be obtained by using Pythagorean

relations as shown in Figure 2.23:

O0R

x0L, x0R

OU

z0R

O1L

z0L

O0L

xU

zU

76

The geometric sine function as explained

() ()
1

x
L1

Gx
R1

G

d2
rr

sin UU
−

=φ

()

() ()

1

x
LK4

Gx
RK4

G

LK33LK344L2RK33RK344R2

LK33LK344L1LK33LK344L2L1

RK33RK344R1RK33RK344R2R1

d2

rr

)CaC(aS)CaC(aSsin

)SaS(aS)CaC(aCC

)SaS(aS)CaC(aCC
cos

UU

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

++++⋅

+
+−+

++++−
⋅

=

φ

φ

 (2.50)

Where,

()

() 1z
R0
RK4RK33RK344R2

1RK33RK344R2z
R0
RK4

dr)CaC(aS

d)CaC(aSr

R0

R0

−=+

++=

()

() 1z
R0
LK4LK33LK344L2

1LK33LK344L2z
R0
LK4

dr)CaC(aS

d)CaC(aSr

R0

R0

−−=+

−+−=

and,

()
R0x

R0
RK4RK33RK344R1RK33RK344R2R1 r)SaS(aS)CaC(aCC =+++−

()
R0x

R0
LK4LK33LK344L1LK33LK344L2L1 r)SaS(aS)CaC(aCC =+++−

77

Therefore, this trigonometric equation can be simplified as fellows

() () () () () ()
1

x
LK4

Gx
RK4

G1z
R0
LK4z

R0
RK4x

R0
LK4x

R0
RK4

d2

rrd2rrsinrrcos
sin UUR0R0R0R0

−+⎟
⎠
⎞⎜

⎝
⎛ −−⋅+⎟

⎠
⎞⎜

⎝
⎛ −⋅

=
φφ

φ (2.51)

Rearranging and simplifying the above equation,

() () () () () ()
UUR0R0R0R0 x

LK4
Gx

RK4
G1z

R0
LK4z

R0
RK4x

R0
LK4x

R0
RK4 rrd4rrsinrrcos +−=⎟

⎠
⎞⎜

⎝
⎛ −−⋅+⎟

⎠
⎞⎜

⎝
⎛ −⋅ φφ (2.52)

Applying the trigonometric identity [63] in order to transform eq.2.52 into a

basic trigonometric equation,

() () () () () () ()
UUR0R0R0R0 x

LK4
Gx

RK4
G

2

1z
R0
LK4z

R0
RK4

2

x
R0
LK4x

R0
RK4 rrsind4rrrr +−=+⎟

⎠
⎞⎜

⎝
⎛ −−+⎟

⎠
⎞⎜

⎝
⎛ − αφ (2.53)

The equation becomes,

()
() ()

() () () () 2

1z
R0
LK4z

R0
RK4

2

x
R0
LK4x

R0
RK4

x
LK4

Gx
RK4

G

d4rrrr

rr
sin

R0R0R0R0

UU

⎟
⎠
⎞⎜

⎝
⎛ −−+⎟

⎠
⎞⎜

⎝
⎛ −

+−
=+αφ (2.54)

Finally, the roll angle is

() ()
() () () ()

αφ −

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞⎜

⎝
⎛ −−+⎟

⎠
⎞⎜

⎝
⎛ −

+−
= −

2

1z
R0
LK4z

R0
RK4

2

x
R0
LK4x

R0
RK4

x
LK4

Gx
RK4

G1

d4rrrr

rr
sin

R0R0R0R0

UU (2.55)

Where,

() ()
() () () ()

() ()
() () () ()

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<⎟
⎠
⎞⎜

⎝
⎛ −−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−−

−
+

>⎟
⎠
⎞⎜

⎝
⎛ −−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−−

−

=
−

−

0d4rrif;
d4rr

rr
tanπ

0d4rrif;
d4rr

rr
tan

1z
R0
LK4z

R0
RK4

1z
R0
LK4z

R0
RK4

x
R0
LK4x

R0
RK41

1z
R0
LK4z

R0
RK4

1z
R0
LK4z

R0
RK4

x
R0
LK4x

R0
RK41

R0R0

R0R0

R0R0

R0R0

R0R0

R0R0

α (2.56)

78

2.9.1.3 Yaw angle

The yaw angle corresponds to a rotation about the vertical axis of the

platform universal frame; xU-axis represents the axis of rotation, and ψ

represents the angle value of rotation as shown in Figure 2.26:

Figure 2.26. Rotation about vertical axis of universal frame byψ .

z0y0

zG

yG

xG, x0

z0y0

zU

yU

xU, x0 ψ

ψ

79

Explicitly, the human eyes can recognize the yaw rotation as a horizontal

change in the positions of right and left conjunctions, as shown in the

following side and front view Figure 2.27.

Figure 2.27. Side view shows the difference in the locations of LC and RC, and top view

shows the rotational yaw angle ψ occurred between the universal and platform frame.

Implicitly, the yaw angle is yielded from the differential velocities

between the right and lift locomotive wheels. The different wheels’ velocities

make the faster wheel rotating around the slower wheel, as well as make the

entire rover rotating around the xU component of the universal frame. This

difference defines the relationship between the movements of the wheels and

the orientation of the rover with respect to universal frame.

yU, y0
zU, z0

RC and LC
RCLC

y0 z0

ψ

After

80

In general, the travel of the rover is generated from the angular

movements of locomotive wheels on the ground. The travel length of wheel

movement (d) on ground is directly proportional to generalized joint

coordinate of wheel link (4θ) and the radius of wheel (4a).

The length of travel may be tracked along either line path if the two

sides move with the same velocity or arc path if the wheels on one side move

faster than that opposite side as shown in Figure 2.28:

Figure 2.28. a. Arc path occurs when 4 4Ra θ ≠ 4 4La θ
 b. Line path occurs whenever 4 4Ra θ = 4 4La θ

The rover posture on Figure 2.28.a shows that ψ is positive value angle

rotating around xU axis in counter clockwise direction whenever the left wheels

are moving at higher speed than the right wheels.

4 4Ra θ

4 4La θ

ψ

(a) (b)

81

The rover will travel forward along y0R axis if R4θ rotates about z3R in

counter-clock wise direction and L4θ rotates about z3L in clock wise direction,

and vice versa.

Mathematically, we can find yaw angle through using arc laws. The arc

length is the difference in the number of wheeled rotations on ground

i.e. 4 4L 4 4Ra aopposite θ θ= − , the radius is the lateral distance between the

opposite wheels. As shown in Figure 2.12, the arc length for the wheels on

right side and left side, respectively, can be obtain as

4 4RA a θψ⋅ = (2.57)

4 4LB a θψ⋅ = (2.58)

Subtracting the two equations from each other, we obtain

4 4L 4 4R

1 4 4L 4 4R

(B A) a θ a θ
2d a θ a θ

ψ
ψ

− ⋅ = −
⋅ = −

4 4L 4 4R

1

a θ a θ
2dψ −

= (2.59)

The above equation can be extended to include the case when the rover

opens its legs aside as shown in Figure 2.29

82

Figure 2.29. Front view shows the four legs open by an angle about z1R

() ()

()

0 R 0 R

4 4L 4 4R
0R 0R
4RK 4LKz z

4 4L 4 4R

2R 4 34RK 3 3RK 1 2L 4 34LK 3 3LK 1

a θ a θ
r r

a θ a θ
S (a C a C) d S (a C a C) d

ψ −
=

−

−
=

+ + − − + −

 4 4L 4 4R

2R 4 34RK 3 3RK 2L 4 34LK 3 3LK 1

a θ a θ
S (a C a C) S (a C a C) 2d

−
=

+ + + +
 (2.60)

z0R

O4RK O4LK

O0R

R2θL2θ

() ()
0 R 0 R

0R 0R
4RK 4LKz z

r r−

83

2.10. Rover transform graph

So far, we find the homogeneous transformation from universal frame

OU to base frame O0, and the forward kinematic transformations from base

frame O0 to wheel frame O4. However, the homogeneous transformations

starting from wheel frame O4 passing by surface frame OS to ground frame OG

are not yet defined. Moreover, the homogeneous transformation from platform

universal OU to ground universal OG is also not computed. Therefore, the rover

transform graph is not completed as shown in Figure 2.31.

2.10.1. Ground universal frame

The platform universal frame OU and ground universal frame OG have

the same orientations which are fixed, but there is variable position, U
Gr ,

separating between these two frames. Therefore, the 3×3 rotational matrix that

relates these two frames, OU and OG, is identity matrix, and the 3×1 position

vector is a function of the input system and the configurations of manipulators.

⎥
⎦

⎤
⎢
⎣

⎡
= ××

10
rI

A 13
U
G33U

G (2.61)

84

The variable position vector, U
Gr , is the summation of the position vector

U
4r from platform universal frame to wheel frame and the position vector 4

Gr

from wheel frame to ground universal frame

4
G

U
4

U
G rrr +=

()
()
()

()
()
()

() ()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ +
=

−
−+=

0
0

rr

r
r

r

r
r
r

UU

U

U

U

U

U

U x
4

Gx
U

4

z
U

4

y
U

4

x
4

G

z
U

4

y
U

4

x
U

4

 (2.62)

The magnitude of the position vector 4
Gr , from wheel frame to ground

frame, is definitely equal to the magnitude of position vector G
4r , from ground

frame to wheel frame, but in opposite direction

G
RK4

RK4
G rr −= (2.63)

The input system ()
Ux

G
4r , is the vertical altitude from ground universal

frame to wheel frame (end-effector). The position vector U
4r is a function of

joint variables that formulate the rover posture and decide the location of

ground contact point.

85

Finally, the combination of identity orientation matrix and the computed

position vector defines the homogenous transformation from the platform

universal frame OU to the ground universal frame OG

() ()

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡ +

=

1000
0100
0010

rr001

A

UU x
4
Gx

U
4

U
G (2.64)

Figure 2.30. Platform universal frame, wheel universal frame, and ground universal

frame are contingent frames for being having the same orientations.

yW

zW

xW

O4

OG

OU

xG

zG

yG

yU

zU

xU

()
Uz

U
4r

()
Ux

U
4r

()
Ux

4
Gr

U
Gr

()
Uy

U
4r

zU, zW, zG

xU, xW, xG

yU, yW, yG

86

2.10.2. Universal wheel frame

After finding 4×4 homogeneous transformation matrix of Roll, Pitch

and Yaw, and A’s from platform to end-effectors, we can find the pose of the

wheel frame with respect to the universals; OU, OW, OG.

Figure 2.31. Completed transform graph.

G
UA

O2L

OU

O3LF

O0L

O1L

O3LR

O2R

O0R

O1R

O3RF O3RR

1L
2LA 1R

2RA

2L
3LFA 2L

3LRA 2R
3RFA 2R

3RRA

R0
R1AL0

L1A

U
0RAU

0LA

LR4
WLRA

SLR
GA SRF

GA

RF3
RF4A RR3

RR4ALF3
LF4A LR3

LR4A

SLF
GA

O4LF O4RFO4LR O4RR

OSLROSLF

OWLF

OSFR

OWRF

OG

OWRR

OSRR

OWLR

SRR
GA

LF4
WLFA

WLF
SLFA WLR

SLRA WRF
SRFA WRR

SRRA

RR4
WRRARF4

WRFA

87

Since the platform universal, wheel universal, and ground universal have

the same and fixed axes, the orientation matrix of wheel frame with respect to

any one of these universal frames can be the same as

G
4

W
4

U
4 RRR == (2.65)

The pose of wheel end-effector with respect to a certain frame is simply

the study of orientations and the position vector. The orientations are defined

in three angles values (α1, α2, α3) respectively about (xU, yU, zU axes), (xW, yW,

zW axes), or (xG, yG, zG axes). The position vector is defined as 0
4r as shown in

the following Figure 2.32:

Figure 2.32. End-effector pose

xU
yU

y4

OU

O4

zU

x4

z4

0
4r

zU, zW, zG

α3
α2

α1

z4

xU, xW, xG

y4

x4

yU, yW, yG

88

The solutions for angles are specified here using roll, pitch, and yaw

approach. The roll is a rotation about y-axis by α 2, the pitch is a rotation about

z-axis by α3, and yaw is a rotation about x-axis by α 3

 W
4T = Rot(yW, α 2) Rot(zW, α 3) Rot(xW, α1)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0cαsα0
0sαcα0
0001

1000
0100
00cαsα
00sαcα

1000
0cα0sα
0010
0sα0cα

1000
paon
paon
paon

11

1133

33

22

22

zzzz

yyyy

xxxx

 (2.66)

The roll, pitch and yaw approach has no translational vector, thus px, py

and pz must equal zero. In any way, if we pre-multiply Equation 2.66 by

Rot(yW, α 2)-1 we obtain

Rot (yW, α 2)-1 W
4T = Rot(zW, α 3) Rot(xW, α1) (2.67)

The left hand side is

⎥
⎥
⎥
⎥

⎦

⎤

++

−−

⎢
⎢
⎢
⎢

⎣

⎡

++

−−

=

10
pcαpsαacαasα

pa
psαpcαasαacα

00
ocαosαncαnsα

on
osαocαnsαncα

LHS
z2x2z2x2

yy

z2x2z2x2

z2x2z2x2

yy

z2x2z2x2

 (2.68)

The right hand side is

89

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

−

=

1000
0cαsα0
0sαcαcαcαsα
0sαsαcαsαcα

RHS
11

13133

13133

 (2.69)

The third row, first column element on the right hand side is zero.

Equating this to the element on the left hand at the same location we obtain

0ncαnsα z2x2 =+ (2.70)

then,

)n,n2(atanα xz2 −= (2.71)

Equating the 1,1 and 1,2 elements from left and right hand sides we obtain

3z2x2 cαnsαncα =− (2.72)

 3y sαn = (2.73)

then,

)nsαncα,2(natanα z2x2y3 −= (2.74)

Equating the 3,2 and 3,3 elements from left and right hand sides we obtain

z2x21 acαasαcα += (2.75)

z2x21 ocαosαsα += (2.76)

90

then

)acαasα,ocαo2(sαatanα z2x2z2x21 ++= (2.77)

6 multiplies, 3 additions, and 3 transcendental function calls.

91

2.10.3. Surface geometries

This work takes the shape of surface geometry traversed by the rover

into account; (flat surface, step surface, inclined surface, sinusoidal surface,

random surface). The surface frame is an orientation axes with respect

universal ground frame OG setting up as follows: xS axis is normal to surface; yS

axis is in tangent direction of contact surface; and zS axis is directed

perpendicularly to xS-yS plane. See Figure 2.33

Figure 2.33. Surface frame.

The homogenous matrix of surface frame with respect to universal

ground frame, can be given by Roll, Pitch, and Yaw,

zS

xS

ySzS

xS
yS

xS

yS
zS

(a) Flat surface and inclined surface
O

(b) Sinusoidal surface.
O

92

G
SR = RPY(2β , 3β , 1β) = Rot (yG, 2β) Rot(zG, 3β) Rot(xG, 1β)

2 2 3 3

3 3 1 1

2 2 1 1

C β 0 Sβ C β Sβ 0 1 0 0
0 1 0 Sβ C β 0 0 C β Sβ
Sβ 0 Sβ 0 0 1 0 Sβ C β

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ ⋅ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

2 3 2 3 1 2 1 2 3 1 2 1

3 3 1 3 1

2 3 2 3 1 2 1 2 3 1 2 1

cβ cβ cβ sβ cβ sβ sβ cβ sβ sβ sβ cβ
sβ cβ cβ cβ sβ

sβ cβ sβ sβ cβ cβ sβ sβ sβ cβ cβ sβ

− + +⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− + +⎣ ⎦

 (2.78)

zSRR

zSLR
zSRF

xSRR xSRF
zU

OU

xU

xSLR

zSLF

xSLF

zG

OG

xG

zS

xS

zG

xG
2β

2β

xS

3β

yS

yG

xG
3β

OS

xS

yS

93

The touching point occurs between wheel and surface, and its position

vector with respect universal ground frame is given by

()
()
()

U

U

U

G
4 x

G U
S 4 y

U
4 z

r

r r

r

⎡ ⎤
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
−⎢ ⎥⎣ ⎦

 (2.79)

Because the surface frame OS, universal wheel frame OW, and end-

effector frame O4 are situated at the same point, those frames have the same

position vector as obtained in equation (2.80)

G G G
S w 4r r r= = (2.80)

The homogeneous transformations starting from wheel end-effector

frame O4 and surface frame OS:

U 4 S U
4 S G GR R R = R = I⋅ ⋅ (2.81)

4 S 4
S G UR R = R I⋅ ⋅ (2.82)

4 4 G
S U SR = R I R⋅ ⋅ (2.83)

4 4 G
S U SR = R R⋅ (2.84)

94

Chapter Three

3. Computational Dynamics

The approach which thesis will recommend and base in dynamic

calculations for computing the equation of motion is Walker and Orin [61, 62]

application “recursive Newton-Euler formulation”; because of its explicit

notations and less execution time. They formulated the equations of motion

in explicit form in comparison with others; simply it will yield a set of recursive

equations, which can be applied to the links sequentially to compute the

generalized forces referenced in their own coordinates in a short period of time

and in on-line control.

3.1. Dynamic equations of motion

The second order nonlinear system equations of motion for the

manipulator, with n joints and n+1 links, are generated generally from inertia,

friction, Coriolis and Centrifugal, and gravity as shown in equation 3.1.

J(q)q+ Cq+ F(q) + G(q) = Q&& & & (3.1)

95

Where,

q n × 1 vector of generalized joint coordinates,

q& n × 1 vector of joint velocities,

q&& n × 1 vector of joint accelerations,

J(q) n × 4 symmetric joint space inertia matrix, or manipulator inertia

tensor,

 C n × 4 viscous friction matrix,

F(q)& n × 1 vector defining Coriolis and Centrifugal forces,

G(q) n × 1 vector defining the gravity terms,

Q n × 1 vector defining the input generalized forces.

 The manipulator joint space inertia and gravitational force are dependent

on the manipulator configurations, q, So that they are considered as function of

variable joints. The Coriolis and Centrifugal forces are considered as functions

of joint velocity, q& [49].

 The input generalized forces Qi are forces and moments on the joint i

exerted by the actuator and by consequences of normal force, friction surface,

and frictional moments exerted by surface on wheel end-effector.

96

3.2. Output generalized coordinates

 The environmental inputs acting on the manipulator system are

represented in forces and torques exerted on an end-effectors. The outputs of

the system are represented in link’s positions, velocities, and accelerations. In

other words, the forces and torques cause the accelerations and velocities,

irrespective of linear or angular forms.

Dynamics conduct two problems: forward dynamics recursion and

backward dynamics recursion. The forward dynamics studies the trajectory of

end-effectors with regard to the forces and torques that intuitively cause the

motion. The inverse dynamic computes the forces and torques required to

cause motion. See Figure 3.1.

Figure 3.1. Dynamics propagations

Figure 3.2 shows link i is connected to its two adjacent links; i.e. link i-1

by joint i and also link i+1 by joint i+1. As well as, it shows the force and

Backward
Recursion

Forward
RecursionForces

Torques
Velocities

Accelerations

97

moment (Fi and Ti) which act directly on end-terminal of link i by link i-1; and

force and moment (Fi+1 and Ti+1) which act directly on another end-terminal of

link i+1 by link i. Furthermore, the inertia force and moment (fi , iτ) act

directly on the center of mass of link i.

Figure 3.2. Recursive Newton-Euler Formulation notations on the base of the standard of
the DH convention.

zU

ri

mi+1

mi

mi-1

rc,i

Oi-1

Oi

Link i

xU

OU

xi

xi-1

zi

ai-1

ai

Joint i+1

Link i-1
zi-1

yU

Fi+1
Ti+1

Fi
Ti

ii

ii

ωω
vv
&

&

fi

iτ

Joint i Link i+1
Joint i-1

c,iv&

98

Moreover, Figure 3.2 also shows that the rover motion is referred with

respect to the universal frame OU (xU, yU, zU). In other words, the coordinate

frames and equations of motion of each link are expressed to the universal

frame. The universal frame is chosen at the center of platform forming yU-zU

horizontal plane, which is parallel to ground plane; and xU axis is normal to the

ground plane directed upward. The coordinates frames are assigned at joints by

utilizing from DH convention as explained in Chapter 2.

3.3. Newton-Euler Recursive Relations

The computations for determining the equations of motion will be

complicated if the calculations are considered with respect to the fixed base

frame [55], because the inertia matrix Ii depends on the orientation of link i.

The efficient solution is to consider the dynamic and kinematics of each link

expressed to its own coordinates frame [49]. Therefore, the equation of motion

of each link is expressed to its own coordinate frame instead of making it

expressed to the base frame following the notations made by Walker and Orin

[61], See Appendix D. The basic idea behind the Newton Euler recursive

formulation is broken down into two steps, i.e. forward and backward

recursion.

99

3.3.1. Forward recursion

This approach transforms the output generalized velocities and

accelerations from the universal frame to the end-effector frame, link by link in

iterative techniques, using the relationships of moving coordinate systems [49].

The generalized coordinates (links positions, velocities, and

accelerations) starting from universal frame OU and ending at end-effector O4

frame can respectively and briefly be symbolized

[]
[]

T

i 1 T
i 1

, i U
q

0 0 θ , 0 i n 1

ψ φ θ
+

+

⎧ =⎪= ⎨
≤ ≤ −⎪⎩

 (3.2)

T

i 1 T

i 1

, i U
q

0 0 θ ,0 i n 1

ψ φ θ
+

+

⎧⎡ ⎤ =⎪⎣ ⎦= ⎨
⎡ ⎤⎪ ≤ ≤ −⎣ ⎦⎩

& &&
&

&
 (3.3)

T

i 1 T

i 1

,i U
q

0 0 θ ,0 i n 1

ψ φ θ
+

+

⎧⎡ ⎤ =⎪⎣ ⎦= ⎨
⎡ ⎤ ≤ ≤ −⎪⎣ ⎦⎩

&& &&&&
&&

&&
 (3.4)

For i = U, q0 describes the platform orientation with respect to universal

frame. The platform of the rover is not bolted on any stationary point

anymore, and its attitude is under the influence of the ground heights and the

configurations of the four legged manipulators. As explained in chapter 1, the

100

attitude angles of the platform are evaluated with respect to the universal

frame, i.e. roll (φ), pitch (θ), and yaw (ψ) angles respectively rotate about yU,

zU, and xU axes. These attitude angles are forming 3×1 vectors filled up with

the generalized position, velocity, and acceleration coordinates of the first

iterative step, respectively, as follow

[]T

0q ψ φ θ= (3.5)

T

0q ψ φ θ⎡ ⎤= ⎣ ⎦
& && & (3.6)

and,

T

0q ψ φ θ⎡ ⎤= ⎣ ⎦
&& &&&& && (3.7)

The homogeneous transformation matrix of base frame O0 with respect

to universal frame OU is

U
0

c c c s c s s c s s s c

s c c c s

s c s s c c s s s s c c

R

φ θ φ θ ψ φ ψ φ θ ψ φ ψ

θ θ ψ θ ψ

φ θ φ θ ψ φ ψ φ θ ψ φ ψ

− + +

−

− + − +

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3.8)

And the homogeneous matrix of the universal frame OU with respect to

the base frame O0 is given as the inverse of the above matrix

101

0
U

c c s s c

c s c s s c c s s c c s

c s s s c c s s s s c c

R

φ θ θ φ θ

φ θ ψ φ ψ θ ψ φ θ ψ φ ψ

φ θ ψ φ ψ θ ψ φ θ ψ φ ψ

−

− + +

+ − − +

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.9)

According to initial values of the system, the angular velocity and

acceleration of universal frame OU with respect to base frame O0 expressed in

universal frame itself can be, respectively, given as

() () ()
U U U

T
U U U U
U U U Ux y z

ω ω ω ω⎡ ⎤= ⎣ ⎦ (3.10)

and,

() () ()
U U U

T
U U U U
U U U Ux y z

ω ω ω ω⎡ ⎤= ⎣ ⎦& & & & (3.11)

Moreover, the linear velocity and acceleration of universal frame OU with

respect to base frame O0 expressed in universal frame itself can be, respectively,

given as

T
U U 4 4R 4 4L
U 0

a θ a θv R 0 02
⎡ ⎤+

= ⋅ ⎢ ⎥
⎣ ⎦

& &
 (3.12)

and,

[]
T

TU U 4 4R 4 4L
U 0

a θ a θv g 0 0 R 0 02
⎡ ⎤+

= − + ⋅ ⎢ ⎥
⎣ ⎦

&& &&
& (3.13)

102

g is a gravity acceleration pointing downward of xU-axis, and its

magnitude is equal to 9.81 and 3.63 m/s2 according to sea level of the earth and

Mars surface. U
Uv& and U

Uv& vectors are treated in projection onto inertial

coordinate system referenced to the universal frame OU.

The position vector from the universal frame OU to base frame O0

expressed in base frame is

[]T0
0 000r = (3.14)

Following the computational algorithm as in Appendix C, The angular

velocity propagation for the base link when i = U

0 0 U
0 U U 0

U
U

ω R ω q

ω
c c s s c

c s c s s c c s s c c s
c s s s c c s s s s c c

φ θ θ φ θ
φ θ ψ φ ψ θ ψ φ θ ψ φ ψ
φ θ ψ φ ψ θ ψ φ θ ψ φ ψ

ψ
φ
θ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎡ ⎤⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

−
− + + ⋅

+ − − +

= +

⎡ ⎤
⎢ ⎥= +
⎢ ⎥
⎣ ⎦

&

&

&

&

 (3.15)

The angular acceleration propagation for the base frame when i = U is

()0 0 U U
0 U U 0 U 0

U U
U U

ω R ω q ω q

ω ω
c c s s c

c s c s s c c s s c c s
c s s s c c s s s s c c

φ θ θ φ θ ψ ψ
φ θ ψ φ ψ θ ψ φ θ ψ φ ψ φ φ
φ θ ψ φ ψ θ ψ φ θ ψ φ ψ θ θ

−
− + + ⋅ + + ×

+ − − +

= + + ×

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

&& &

&& &

&& &

& & && &

&
 (3.16)

103

The linear acceleration propagation for the base link when i = U is

()0 00 0 0 0 0 U
0 0 0 0 U U0 0

0 0 0 4R 4L
0 0 0

0 0
0 0
0 0

g
rθ rθω 2

0

v ω r ω ω r R v

ω ω
φ θ θ φ θ

φ θ ψ φ ψ θ ψ φ θ ψ φ ψ
φ θ ψ φ ψ θ ψ φ θ ψ φ ψ

−
+ + − + +

+ − − +

−⎡ ⎤
⎢ ⎥⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ −⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥× ⋅

⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎢ ⎥

⎣ ⎦

= × + × × +

= × ×
&& &&

&& &

&
c c s s c

c s c s s c c s s c c s
c s s s c c s s s s c c

(3.17)

The velocity and acceleration of the platform center of mass, when i = 0,

are computed respectively as follows:

0 0 0 0
c,0 0 c,0 0

0 0
0 0

v ω r v

0
ω 0 v

0

= × +

⎡ ⎤
⎢ ⎥= × +⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.18)

and,

()0 0 0 0 0 0 0
c,0 0 c,0 0 0 c,0 0

0 0 0 0
0 0 0 0

v ω r ω ω r v

0 0
ω 0 ω ω 0 v

0 0

= × + × × +

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= × + × × +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

&& &

& &
 (3.19)

Once the velocities and accelerations of the platform center of mass are

computed, the inertia force and moment acting on the platform center of mass

can be computed. Assuming the viscous damping friction is negligible, the total

104

external force acting on each link center of mass is given by the Newton’s

second law, and whilst the moment acting on each link center of mass is given

by Euler’s equation. Newton-Euler formulation for the platform center of mass

can be presented as:

0 0
0 0 c , 0f m v= & (3.20)

and,

()00 0 0
0 0 0 0 0 0τ I ω ω I ω= + ×& (3.21)

For 0≤ i ≤n-1, qi+1 describes the motion of the manipulator starting

from link 1 ending at link 4. n represents the number of joints of the

manipulator. Our mobile robot employs four revolute joints for each

manipulator; no any prismatic joint is employed. Thus, the notations of output

generalized position coordinates will match the joint angles. Each entry inside

qi+1 is composed of a 3×1 vector

[]
[]
[]
[]T44

T
33

T
22

T
11

θ00q

θ00q

θ00q

θ00q

=

=

=

=

 (3.22)

105

As well as, for 0≤ i ≤3, the generalized joint velocities and joint

accelerations are, respectively, as shown bellow:

[]T1i1i θ00q ++ = && (3.23)

[]T1i1i θ00q ++ = &&&& (3.24)

Now completing the algorithm as shown in Appendix C and D, The

angular velocity propagation for link 1 when i = 0

1 1 0
1 0 0 1

1 1
0
0

1 1 1

ω R ω q

C S 0 0
0 0 1 ω 0
S C 0 θ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥− ⋅ +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎝ ⎠

= +

=

&

&

 (3.25)

The angular velocity propagation for link 2 when i = 1

2 2 1
2 1 1 2

2 2
1
1

2 2 2

C S 0 0
0 0 1 ω 0
S C 0 θ

ω R ω q⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= ⋅ +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎝ ⎠

= +

&

&

 (3.26)

The angular velocity propagation for link 3 when i = 2

()3 3 2
3 2 2 3

3 3
2

3 3 2

3

ω R ω q

C S 0 0
S C 0 ω 0
0 0 1 θ

= +

− − ⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= − ⋅ +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

&

&

 (3.27)

106

The angular velocity propagation for link 4 when i = 3

()4 4 3
4 3 3 4

4 4
3

4 4 3

4

ω R ω q

C S 0 0
-S C 0 ω 0
0 0 1 θ

= +

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= ⋅ +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

&

&

 (3.28)

Now, the angular accelerations propagation starting from link 1 and

ending at end effector link can be computed using the formula

()i 1 i 1 i i
i 1 i i i 1 i i 1ω R ω q ω q+ +
+ + += + + ×& & && & (3.29)

The angular acceleration propagation for link 1 when i = 0

()1 1 0 0
1 0 0 1 0 1

1 1
0 0
0 0

1 1 1 1

ω R ω q ω q

C S 0 0 0
0 0 1 ω 0 ω 0
S C 0 θ θ

= + + ×

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + + ×⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

& & && &

&

&& &

 (3.30)

The angular acceleration propagation for link 2 when i = 1

()2 2 1 1
2 1 1 2 1 2

2 2
1 1
1 1

2 2 2 2

C S 0 0 0
0 0 1 ω 0 0
S C 0 θ θ

ω R ω q ω q

ω

+ + ×

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + + ×⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

=

&

&& &

& & && &

 (3.31)

The angular acceleration propagation for link 3 when i = 2

107

()3 3 2 2
3 2 2 3 2 3

3 3
2 2

3 3 2 2

3 3

ω R ω q ω q

C S 0 0 0
S C 0 ω 0 ω 0
0 0 1 θ θ

+ + ×

⎛ ⎞− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⋅ + + ×⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

=

=

& & && &

&

&& &

 (3.32)

The angular acceleration propagation for link 4 when i = 3

()4 4 3 3
4 3 3 4 3 4

4 4
3 3

4 4 3 3

4 4

ω R ω q ω q

C S 0 0 0
-S C 0 ω 0 ω 0
0 0 1 θ θ

+ + ×

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ + + ×⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

=& & && &

&

&& &

 (3.33)

And now, the linear acceleration propagations starting from link 1 to link

4 are computed by following this algorithm

()i 1 i 1 i 1 i 1 i 1 i 1 i 1 i
i 1 i 1 i 1 i 1 i 1 i 1 i iv ω r ω ω r R v+ + + + + + +
+ + + + + += × + × × +&& & (3.34)

The linear acceleration propagation for link 1 when i = 0 is

()1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 0

1 1
1 1 1 0
1 1 1 1 1 0

1 1

v ω r ω ω r R v

0 0 C S 0
ω d ω ω d 0 0 1 v

0 0 S C 0

= × + × × +

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= × − + × × − + − ⋅⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

&& &

& &
 (3.35)

The linear acceleration propagation for link 2 when i = 1 is

108

()2 22 2 2 2 2 1
2 2 2 2 1 12 2

2 2
2 2 2 1
2 2 2 1

2 2

ω R v

0 0 C S 0
ω 0 ω ω 0 0 0 1

0 0 S C 0

v r ω ω r

v
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= × + × × +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

= × + × × +

⋅

& &

&

&

&

 (3.36)

The linear acceleration propagation for link 3 when i = 2 is

()3 33 3 3 3 3 2
3 3 3 3 2 23 3

3 3 3 3
3 3 3 2
3 3 3 3 3 2

a a C S 0
0 0 S C 0
0 0 0 0 1

v ω r ω ω r R v

ω ω ω v
⎛ ⎞ − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= × + × × + − ⋅⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

= × + × × +&& &

& &

 (3.37)

The linear acceleration propagation for link 4 when i = 3 is

()4 4 4 4 4 4 4 3
4 4 4 4 4 4 3 3

4 4 4 4
4 4 4 3
4 4 4 4 4 3

v ω r ω ω r R v

a a C S 0
0 0 -S C 0
0 0 0 0 1

ω ω ω v

= × + × × +

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= × + × × + ⋅⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

&& &

& &
 (3.38)

The velocity and acceleration of the center of mass of link i, starting

from link 1 and ending at link 4, can be computed respectively as follows:

() 1i
1i

1i
1i,c

1i
1i

1i
1i

1i
1i,c

1i
1i

1i
1i,c vrωωrωv +

+
+
+

+
+

+
+

+
+

+
+

+
+ +××+×= &&& (3.39)

The linear acceleration of center of mass of link 1 when i = 0 is

109

()1 1 1 1 1 1 1
c,1 1 c,1 1 1 c,1 1

1 1 1 11 1
1 1 1 1

v ω r ω ω r v

0 0
d dω ω ω v2 2
0 0

= × + × × +

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥= × + × × +
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎝ ⎠

&& &

& &
 (3.40)

The linear acceleration of center of mass of link 2 when i = 1 is

()2 2 2 2 2 2 2
c,2 2 c,2 2 2 c,2 2

2 2 2 2
2 2 2 2

v ω r ω ω r v

0 0
ω 0 ω ω 0 v

0 0

= × + × × +

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= × + × × +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

&& &

& &
 (3.41)

The linear acceleration of center of mass of link 3 when i = 2 is

()3 3 3 3 3 3 3
c,3 3 c,3 3 3 c,3 3

3 3

3 3 3 3
3 3 3 3

v ω r ω ω r v

a a
2 2

ω 0 ω ω 0 v
0 0

= × + × × +

⎛ ⎞⎡ ⎤ ⎡ ⎤− −⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥= × + × × +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

&& &

& &
 (3.42)

The linear acceleration of center of mass of link 4 when i = 3 is

()4 4 4 4 4 4 4
c,4 4 c,4 4 4 c,4 4

4 4
4 4 4 4
4 4 4 4

v ω r ω ω r v

a a
ω 0 ω ω 0 v

0 0

= × + × × +

⎛ ⎞− −⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= × + × × +⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

&& &

& &
 (3.43)

Starting from link 1 and ending at link 4, inertia force i
if acting on the

center of mass of link i expressed in the frame Oi is given by

110

1i
1i,c1i

1i
1i vmf +

++
+
+ = & (3.44)

Inertia force acting on the center of mass of link 1 when i = 0 is

1
1,c1

1
1 vmf &= (3.45)

Inertia force acting on the center of mass of link 2 when i = 1 is

2
2,c2

2
2 vmf &= (3.46)

Inertia force acting on the center of mass of link 3 when i = 2 is

3
3,c3

3
3 vmf &= (3.47)

Inertia force acting on the center of mass of link 4 when i = 3 is

4
4,c4

4
4 vmf &= (3.48)

Starting from link 1 and ending at link 4, inertia torques acting on the

center of masses of link i expressed in the frame Oi is given by are given by

following this algorithm:

()1i
1i1i

1i
1i

1i
1i1i

1i
1i ωIωωIτ +

++
+
+

+
++

+
+ ×+= & (3.49)

Inertia torque acting on the center of mass of link 1 when i = 0 is

111

()

() ()

11 1 1
1 1 1 1 1 1

22
11 11 1 1 1

1 1 1

I ω I

1 0 0 1 0 0
m dm d

0 0 0 0 0 01212
0 0 1 0 0 1

τ ω ω

ω ω ω
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

= + ×

= + ×
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

&

&
 (3.50)

Inertia torque acting on the center of mass of link 2 when i = 1 is

()22 2 2
2 2 2 2 2 2

22 2
2 2 2

0 0 0
× 0 0 0

0 0 0

τ I ω ω I ω

0 0 0
0 0 0 ω ω ω
0 0 0

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

= + ×

= + ×
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

&

&
 (3.51)

Inertia force acting on the center of mass of link 3 when i = 2 is

()

() ()

33 3 3
3 3 3 3 3 3

22
33 33 3 3 3

3 3 3

0 0 0 0 0 0
m am a

0 1 0 0 1 01212
0 0 1 0 0 1

τ I ω ω I ω

ω ω ω
⎡ ⎤
⎢ ⎥ ⋅ ⋅⎢ ⎥
⎢ ⎥⎣ ⎦

= + ×

= + ×
⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

&

&
 (3.52)

Inertia force acting on the center of mass of link 4 when i = 3 is

()44 4 4
4 4 4 4 4 4τ I ω ω I ω= + ×& (3.53)

112

3.3.2. Backward recursion

Inverse dynamics approach computes the forces and torques recursively

from link 4 to link 1. After computing the inertia forces and moments exerted

on the center of masses of links, backward computational procedures can be

followed by evaluating one a link at a time starting from the end-effector frame

and ending at the base frame as shown in recursive form:

i i i 1 i
i i 1 i 1 iF R F f+

+ += + (3.54)

()() ()i i i 1 i 1 i i 1 i i i i i
i i 1 i 1 i i i 1 i i c,i i iT R T R r F R r r f τ+ + +

+ + += + × + + × + (3.55)

S
SF and S

ST are external force and moment exerted on the end-effector

link in frame O4 (x4, y4, z4). These can be defined in 3×1 vector as

[]TS
S n fF = F F 0− (3.56)

[]TS
ST = 0 0 0 (3.57)

The force exerted on link 4 by link 3 when i = 4 is

4 4 S 4
4 S S 4F = R F + f

n

4 G 4
U S f 4

F
= R R × F f

0

⎡ ⎤
⎢ ⎥⋅ − +⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.58)

113

The force exerted on link 3 by link 2 is

3 3 4 3
3 4 4 3

4 4
4 3

4 4 4 3

F R F f

C S 0
S C 0 F f
0 0 1

= +

−⎡ ⎤
⎢ ⎥= ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.59)

The force exerted on link 2 by link 1 is

2 2 3 2
2 3 3 2

3 3
3 2

3 3 3 2

F R F f

C S 0
S C 0 F f
0 0 1

= +

−⎡ ⎤
⎢ ⎥= − − ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.60)

The force exerted on link 1 by link 0 is

1 1 2 1
1 2 2 1

2 2
2 1

2 2 2 1

F R F f

C 0 S
S 0 C F f
0 1 0

= +

⎡ ⎤
⎢ ⎥= − ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.61)

The force exerted on link 0

0 0 1 0
0 1 1 0

1 1
1 0

1 1 1 0

C 0 S
S 0 C
0 1 0

F R F f

F f
−⎡ ⎤

⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

= +

= +
 (3.62)

The force exerted on link 0 can be transformed into universal frame OU

114

U U 0
0 0 0

0
0

F R F

F
c c c s c s s c s s s c

s c c c s
s c s s c c s s s s c c

φ θ φ θ ψ φ ψ φ θ ψ φ ψ
θ θ ψ θ ψ
φ θ φ θ ψ φ ψ φ θ ψ φ ψ

− + +
− ⋅

− + − +

=

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

 (3.63)

The moments exerted on link i by link i-1 can be computed by following

this algorithm

() i
i

i
i

i
i,c

i
i]

1i
1i

i
i

1i
i

1i
1i

i
1i

i
i τf)r(rF)r(RTRT +×++×+= +

+
++

++ (3.64)

The moments exerted on link 4 by link 3 when i = 4 is

()S S 4 S4 4 4 4 4 4
4 S 4 c,4 4 4S 4 4 S

4 n 4 4
4 4 4 4
S S f 4 4

0 a F a a
0 0 F 0 0 f τ
0 0 0 0 0

T R T (R r) F (r r) f τ

R R
⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ + ⋅ × + + × +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠

= + × + + × +

=
 (3.65)

The moment exerted on link 3 by link 2 when i = 3 is

()()3 3 4 4 3 4 3 3 3 3
3 4 4 3 3 4 3 c,3 3 3

4 4 4 4 3 3 3
4 4 3 3

4 4 4 4 4 4 3 3

T R T R r F (r r) f τ

C S 0 C S 0 a a 0.5a
S C 0 T S C 0 0 F 0 0 f τ
0 0 1 0 0 1 0 0 0

= + × + + × +

⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − ⋅ × + + × +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠

 (3.66)

The moment exerted on link 2 by link 1 when i = 2 is

115

()2 2 3 3 2 3 2 2 2 2
2 3 3 2 2 3 2 c,2 2 2

3 3 3 3
3 3 2 2

3 3 3 3 3 3 2 2

T R T (R r) F (r r) f τ

C S 0 C S 0 0 0 0
S C 0 T S C 0 0 F 0 0 f τ
0 0 1 0 0 1 0 0 0

= + × + + × +

⎛ ⎞⎛ ⎞ ⎛ ⎞− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − + − ⋅ × + + × +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠

 (3.67)

The moment exerted on link 1 by link 0 when i = 1 is

()1 1 2 2 1 2 1 1 1 1
1 2 2 1 1 2 1 c,1 1 1

2 2 2 2
2 2 1 1

2 2 2 1 2 1 1 1 1

2 2

T R T (R r) F (r r) f τ

C 0 S C S 0 0 0 0
S 0 C T 0 0 1 d F d 0.5d f τ
0 1 0 S C 0 0 0 0

= + × + + × +

⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + ⋅ − × + − + × +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠

(3.68)

The moment exerted on link 0 when i = 0 is

()0 0 1 1 0 1 0 0 0 0
0 1 1 0 0 1 0 c,0 0 0

1 1 1 1
1 1 0 0

1 1 1 1 0 0

1 1

T R T (R r) F (r r) f τ

C 0 S C S 0 0 0 0
S 0 C T 0 0 1 0 F 0 0 f τ
0 1 0 S C 0 0 0 0

= + × + + × +

⎛ ⎞⎛ ⎞ ⎛ ⎞−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − ⋅ × + + × +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠

 (3.69)

The moment exerted on link 0 can be transformed into universal frame OU

U U 0
0 0 0

0
0

T R T

T
c c c s c s s c s s s c

s c c c s
s c s s c c s s s s c c

φ θ φ θ ψ φ ψ φ θ ψ φ ψ
θ θ ψ θ ψ
φ θ φ θ ψ φ ψ φ θ ψ φ ψ

− + +
− ⋅

− + − +

=

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

 (3.70)

The forces and torque exerted by the actuator at joint i is

116

()
()

Ti i
i i+1 U

i Ti i
i i+1 U

F (R z);
Q

T (R z);

⎧⎪= ⎨
⎪⎩

input force for prismatic link

input torque for rotational link
 (3.71)

All joints used are revolute type, thus the input torque Qi at each joint is the

sum of the projection of i
iT onto zU (xU, yU, zU) about the zU axis

() ()Ti i
i i i+1 UQ = T R z (3.72)

The dynamic equation at joint 1 when i = 1 is given by

() ()

()

T1 0
1 1 1 U

1 1
T1

1 1 1

Q T R z

C 0 -S 0
T S 0 C 0

0 -1 0 1

=

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= ⋅⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 (3.73)

The dynamic equation at joint 2 when i = 2 is given by

() ()

()

T2 1
2 2 2 U

2 2
T2

2 2 2

Q

C 0 S 0
S 0 C × 0
0 1 0 1

T R z

T

=

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= −⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 (3.74)

The dynamic equation of joint 3 when i = 3 is given by

117

() ()

()

T3 2
3 3 3 U

3 3
T3

3 3 3

Q R z

C S 0 0
S C 0 0
0 0 1 1

T

T

=

⎛ ⎞−⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= − − ⋅⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 (3.75)

Finally, The dynamic equation at joint 4 when i = 4 is given by

() ()

()

T4 3
4 4 4 U

4 4
T4

4 4 4

Q

C S 0 0
S C 0 0
0 0 1 1

T R z

T

=

⎛ ⎞−⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥= ⋅⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 (3.76)

118

Chapter Four

4. System forces and moments

The system forces and moments are transformed to platform universal

frame from outermost link till the innermost, link by link. The system forces

are generated from the system weight of rover, inertial forces on the center of

mass of links, and direct contacts between wheels and ground surface

expressed as the normal force, and frictional force.

 The longitudinal and lateral forces exerted on wheel are relatively small

values and even avoided here in this work. Furthermore, the moments between

wheel and surface are also negligible.

4.1.1. System weight

Benefiting from Newton-Euler recursive method, the total weight of

rover will be evaluated at the platform universal frame. This is resulted from

transforming the gravity force of each link starting from wheel link to platform

119

link, link by link. In other meaning, the system weight is defined as a

gravitational force vector of a system mass constant times the acceleration of

gravity that points downward vertically in xU of the platform universal frame

OU.

[]T00mgweightSystem −= (4.1)

Where, m is the system mass constant of rover links and is equal to

12kg, g is the gravitational acceleration produced in a body due to the Mars'

gravitational attraction; Its SI unit is m/s² and its values on the surfaces of the

earth and Mars, respectively, are 9.8m/s² and 3.63 m/s².

The vertical projection of system weight from center of mass will be

distributed among the contact wheels on the base of joint configurations,

ground geometries, and rover attitude. The amounts of distributed weights on

wheels are simply defined as wheel pressures on ground contacts. In the case of

symmetric configurations and flat surface, the projection of center of mass will

be at the middle area of the support polygon, so the system weight will be

distributed equally among these wheels. However, if the changing occurs in

joint configurations and ground geometry during the travel; the position of

120

vertical project of center of mass will change and the amounts of wheeled

pressures on ground will already change.

 Wheel universal frame OW is assigned at each contact point in order to

represent the part of distributed weight on that wheel. OU and OW are

contingent.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=

0
0
F

F
W

W
W (4.2)

4.1.2. Normal force

The normal force is inspired from Newton’s third law which states that

for each action force there is reaction force with the same magnitude and

opposite direction. The contact always generates reaction force acting

perpendicular to the contact surface expressed in surface frame OS.

Whenever any wheel of the rover are in contact with ground, the

gravitational or weight force acting on wheel will apply to the ground, so the

ground will react on the wheel with normal force. The magnitude of the normal

force is equal weight force component applied in xS axis. The direction of the

121

normal force is instantaneously perpendicular to the surface in xS axis. In the

case of the flat surface, the normal force is coplanar to the positive axis xW

direction. However, if the wheels choose their footholds on inclined or smooth

uneven surface, the normal force will make angle relatively to wheel universal

frame OW.

In static stabilizing condition, the number of supporting wheels on

ground can vary between 3 and 4 for a quadruped robot. In the case of

symmetric configurations and flat surface, the weight force acting by

supporting wheel on the ground is equal the weight of system rover divided by

the number of supporting wheels

nc
mgFn = (4.3)

Where, Fn is the static normal force acting from the ground on the

supporting wheel. mg is the weight of the rover acing on ground and directed

coplanar with respect universal frame. nc is the number of wheels which are in

contact with the ground. However as shown in Figure 4.1, in the case of non-

122

symmetric rover and non-uniform surface geometries the specific equation 4.3

is totally not capable for evaluating the normal forces.

Figure 4.1. Normal forces acting on wheels perpendicular to surface.

This rover dealt with unknown reactions for four, three, and two legs;

the system of four legs has three equations and four unknown so it is

considered as indeterminate system of equations, while the system of three legs

has three equations and three unknowns so it is considered determinate system

of equation Furthermore, the two legs system has two variables and provided

with two equations, thus this is considered determinate system of equation.

FnSLF
FnSRR

FnSRF

OU

zU

xU

FnS4L

123

4.1.3. Frictional force

In general, the friction is resulted from the pressing two surfaces with

each other, and generates deformation, heat, as well as frictional force in the

opposite direction of motion. The types of frictions are rolling, sliding slipping

frictions. In any way, in pure rolling motion there is no sliding or slipping; and

rolling on solid surface yields no rolling friction at all. The direction of motion

is always perpendicular to the normal force and tangent to surface. The rolling

friction occurs between wheels and contact area surface. Whereas rolling

frictional force is a function of normal force acting from ground on wheel and

coefficient of rolling friction.

nf µFF = (4.4)

Where, Ff is the rolling frictional force occurred between the wheel and

the soft terrain. µ is rolling coefficient friction between two surfaces. Fn is the

normal force exerted on the wheel. However, rolling friction occurred when

the rover is moving on soft terrain. Thus, the rolling coefficient of this work is

equal zero because we assume solid surface.

124

4.1.4. Wheeled motor torque

The motor exerts required amount of torque that enables wheel to grip

with surface and propel it in tangent direction of the surface. The motor torque

is equal the cross product of traction force and wheel radius.

Tm = r × Ft (4.5)

Where, Tm is the motor torque, and Ft is the traction force in the

direction of tangential line of surface. The motor torque rotates about z3 axis in

the direction of wheel rotation.

Finally, the resultant of forces and moments exerted on wheel end-

effector are computed with respect to frame OS (xS, yS, zS) as shown in Figure

4.2, and it can be obtained respectively in two 3 × 1 vectors.

[]TS
S n fF F F 0= − (4.6)

[]TS
ST 0 0 0= (4.7)

Because the wheels are locomoted on solid surface as assumed, the

rolling friction is negligible in this work.

125

Figure 4.2. External forces and moments exerted by ground on end-effector projected in
frame O4.

Where,

Fn normal force perpendicular to contact surface and in xS axis

direction.

Ff frictional force tangential of contact surface in opposite direction

of wheel linear motion in the direction of -yS axis.

FW weight acing on center of wheel and directed downward in -xW

axis of wheel universal frame OW.

O4

z4

y4

x4

FW β

v

Ff

Fn

Tm

O3

yS yWOS

xS

Ff

Fn

OW

xW

126

Tm motor moment in direction of wheel rotational motion about z3-

axis.

β Slope angle of inclined surface.

The summation of all moments (resulted fro normal forces, inertial

forces, gravity forces exerted on center of mass of links, and torques exerted on

link) about the contact wheels are equal zero. Thus, this is the definition of

balanced equation.

Now for the four contact legs, the summation of all moments can be

given as in equations 4.9, 4.15, 4.21, and 4.27 as shown respectively in:

127

() () ()
() () ()
() () ()
() () ()
() ()
() ()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=++++

++++

++++

+×−+×−

+×−+×−

+×−+×−+×−

+×−+×−+×−

+×−+×−+×−

+×−+×−+×−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=∑

0
0
0

τRτRτRτRτR

τRτRτRτR
τRτRτRτR

fR)r(rfR)r(r

fR)r(rfR)r(r

fR)r(rfR)r(rfR)r(r

fR)r(rfR)r(rfR)r(r

fR)r(rfR)r(rfR)r(r
FR)r(rFR)r(rFR)r(r

0
0
0

M

R0
R0

U
R0

L1
L1

U
L1

L2
L2

U
L2

R1
R1

U
R1

R2
R2

U
R2

LR3
LR3

U
LR3

LR4
LR4

U
LR4

LF3
LF3

U
LF3

LF4
LF4

U
LF4

RR3
RR3

U
RR3

RR4
RR4

U
RR4

RF3
RF3

U
RF3

RF4
RF4

U
RF4

LR4
LR4

U
LR4

U
RF4

U
LRc,4

LR3
LR3

U
LR3

U
RF4

U
LRc,3

LF4
LF4

U
LF4

U
RF4

U
LFc,4

LF3
LF3

U
LF3

U
RF4

U
LFc,3

L2
L2

U
L2

U
RF4

U
Lc,2

L1
L1

U
L1

U
RF4

U
Lc,1

R0
R0

U
R0

U
RF4

U
Rc,0

R1
R1

U
R1

U
RF4

U
Rc,1

R2
R2

U
R2

U
RF4

U
Rc,2

RR3
RR3

U
RR3

U
RF4

U
RRc,3

RR4
RR4

U
RR4

U
RF4

U
RRc,4

RF3
RF3

U
RF3

U
RF4

U
RFc,3

RF4
RF4

U
RF4

U
RF4

U
RFc,4

SLR
SLR

U
SLR

U
RF4

U
LR4

SLF
SLF

U
SLF

U
RF4

U
LF4

SRR
SRR

U
SRR

U
RF4

U
RR4

RF4

 (4.8)

The above equation can be abbreviated with notations and it provides for

definition of the equation of balanced,

nSRR 1 nSLF 2 nSLR 3 1F B F B F B M 0⋅ + ⋅ + ⋅ + = (4.9)

Where,

[]TU U U
1 4RR 4RF SRRB (r r) (R 1 µ 0)= − × − (4.10)

[]TU U U
2 4LF 4RF SLFB (r r) (R 1 µ 0)= − × − (4.11)

[]TU U U
3 4LR 4RF SLRB (r r) (R 1 µ 0)= − × − (4.12)

and

()U U U i U i
1 c,i 4RF i i i i

i i
M (r r) R f R τ= − × +∑ ∑ (4.13)

128

() () ()
() () ()
() () ()
() () ()
() ()
() ()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=++++

++++

++++

+×−+×−

+×−+×−

+×−+×−+×−

+×−+×−+×−

+×−+×−+×−

+×−+×−+×−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=∑

0
0
0

τRτRτRτRτR

τRτRτRτR
τRτRτRτR

fR)r(rfR)r(r

fR)r(rfR)r(r

fR)r(rfR)r(rfR)r(r

fR)r(rfR)r(rfR)r(r

fR)r(rfR)r(rfR)r(r
FR)r(rFR)r(rFR)r(r

0
0
0

M

R0
R0

U
R0

L1
L1

U
L1

L2
L2

U
L2

R1
R1

U
R1

R2
R2

U
R2

LR3
LR3

U
LR3

LR4
LR4

U
LR4

LF3
LF3

U
LF3

LF4
LF4

U
LF4

RR3
RR3

U
RR3

RR4
RR4

U
RR4

RF3
RF3

U
RF3

RF4
RF4

U
RF4

LR4
LR4

U
LR4

U
RR4

U
LRc,4

LR3
LR3

U
LR3

U
RR4

U
LRc,3

LF4
LF4

U
LF4

U
RR4

U
LFc,4

LF3
LF3

U
LF3

U
RR4

U
LFc,3

L2
L2

U
L2

U
RR4

U
Lc,2

L1
L1

U
L1

U
RR4

U
Lc,1

R0
R0

U
R0

U
RR4

U
Rc,0

R1
R1

U
R1

U
RR4

U
Rc,1

R2
R2

U
R2

U
RR4

U
Rc,2

RR3
RR3

U
RR3

U
RR4

U
RRc,3

RR4
RR4

U
RR4

U
RR4

U
RRc,4

RF3
RF3

U
RF3

U
RR4

U
RFc,3

RF4
RF4

U
RF4

U
RR4

U
RFc,4

SLR
SLR

U
SLR

U
RR4

U
LR4

SLF
SLF

U
SLF

U
RR4

U
LF4

SRF
SRF

U
SRF

U
RR4

U
RF4

RR4

 (4.14)

nSRF 1 nSLF 2 nSLR 3 2F C F C F C M 0⋅ + ⋅ + ⋅ + = (4.15)

Where,

[]TU U U
1 4RF 4RR SRFC (r r) (R 1 µ 0)= − × − (4.16)

[]TU U U
2 4LF 4RR SLFC (r r) (R 1 µ 0)= − × − (4.17)

[]TU U U
3 4LR 4RR SLRC (r r) (R 1 µ 0)= − × − (4.18)

()U U U i U i
2 c,i 4RR i i i i

i i
M (r r) R f R τ= − × +∑ ∑ (4.19)

129

() () ()
() () ()
() () ()
() () ()
() ()
() ()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=++++

++++

++++

+×−+×−

+×−+×−

+×−+×−+×−

+×−+×−+×−

+×−+×−+×−

+×−+×−+×−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=∑

0
0
0

τRτRτRτRτR

τRτRτRτR
τRτRτRτR

fR)r(rfR)r(r

fR)r(rfR)r(r

fR)r(rfR)r(rfR)r(r

fR)r(rfR)r(rfR)r(r

fR)r(rfR)r(rfR)r(r
FR)r(rFR)r(rFR)r(r

0
0
0

M

R0
R0

U
R0

L1
L1

U
L1

L2
L2

U
L2

R1
R1

U
R1

R2
R2

U
R2

LR3
LR3

U
LR3

LR4
LR4

U
LR4

LF3
LF3

U
LF3

LF4
LF4

U
LF4

RR3
RR3

U
RR3

RR4
RR4

U
RR4

RF3
RF3

U
RF3

RF4
RF4

U
RF4

LR4
LR4

U
LR4

U
LF4

U
LRc,4

LR3
LR3

U
LR3

U
LF4

U
LRc,3

LF4
LF4

U
LF4

U
LF4

U
LFc,4

LF3
LF3

U
LF3

U
LF4

U
LFc,3

L2
L2

U
L2

U
LF4

U
Lc,2

L1
L1

U
L1

U
LF4

U
Lc,1

R0
R0

U
R0

U
LF4

U
Rc,0

R1
R1

U
R1

U
LF4

U
Rc,1

R2
R2

U
R2

U
LF4

U
Rc,2

RR3
RR3

U
RR3

U
LF4

U
RRc,3

RR4
RR4

U
RR4

U
LF4

U
RRc,4

RF3
RF3

U
RF3

U
LF4

U
RFc,3

RF4
RF4

U
RF4

U
LF4

U
RFc,4

SLR
SLR

U
SLR

U
LF4

U
LR4

SRR
SRR

U
SRR

U
LF4

U
RR4

SRF
SRF

U
SRF

U
LF4

U
RF4

LF4

 (4.20)

nSRF 1 nSRR 2 nSLR 3 3F D F D F D M 0⋅ + ⋅ + ⋅ + = (4.21)

Where,

[]TU U U
1 4RF 4LF SRFD (r r) (R 1 µ 0)= − × − (4.22)

[]TU U U
2 4RR 4LF SRRD (r r) (R 1 µ 0)= − × − (4.23)

[]TU U U
3 4LR 4LF SLRD (r r) (R 1 µ 0)= − × − (4.24)

() ∑∑ +×−=
i

i
i

U
i

i

i
i

U
i

U
LF4

U
ic,3 τRfR)r(rM (4.25)

130

() () ()
() () ()
() () ()
() () ()
() ()
() ()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=++++

++++

++++

+×−+×−

+×−+×−

+×−+×−+×−

+×−+×−+×−

+×−+×−+×−

+×−+×−+×−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=∑

0
0
0

τRτRτRτRτR

τRτRτRτR
τRτRτRτR

fR)r(rfR)r(r

fR)r(rfR)r(r

fR)r(rfR)r(rfR)r(r

fR)r(rfR)r(rfR)r(r

fR)r(rfR)r(rfR)r(r
FR)r(rFR)r(rFR)r(r

0
0
0

M

R0
R0

U
R0

L1
L1

U
L1

L2
L2

U
L2

R1
R1

U
R1

R2
R2

U
R2

LR3
LR3

U
LR3

LR4
LR4

U
LR4

LF3
LF3

U
LF3

LF4
LF4

U
LF4

RR3
RR3

U
RR3

RR4
RR4

U
RR4

RF3
RF3

U
RF3

RF4
RF4

U
RF4

LR4
LR4

U
LR4

U
LR4

U
LRc,4

LR3
LR3

U
LR3

U
LR4

U
LRc,3

LF4
LF4

U
LF4

U
LR4

U
LFc,4

LF3
LF3

U
LF3

U
LR4

U
LFc,3

L2
L2

U
L2

U
LR4

U
Lc,2

L1
L1

U
L1

U
LR4

U
Lc,1

R0
R0

U
R0

U
LR4

U
Rc,0

R1
R1

U
R1

U
LR4

U
Rc,1

R2
R2

U
R2

U
LR4

U
Rc,2

RR3
RR3

U
RR3

U
LR4

U
RRc,3

RR4
RR4

U
RR4

U
LR4

U
RRc,4

RF3
RF3

U
RF3

U
LR4

U
RFc,3

RF4
RF4

U
RF4

U
LR4

U
RFc,4

SLF
SLF

U
SLF

U
LR4

U
LF4

SRR
SRR

U
SRR

U
LR4

U
RR4

SRF
SRF

U
SRF

U
LR4

U
RF4

LR4

 (4.26)

nSRF 1 nSRR 2 nSLF 3 4F E F E F E M 0⋅ + ⋅ + ⋅ + = (4.27)

Where,

[]TU U U
1 4RF 4LR SRFE (r r) (R 1 µ 0)= − × − (4.28)

[]TU U U
2 4RR 4LR SRRE (r r) (R 1 µ 0)= − × − (4.29)

[]TU U U
3 4LF 4LR SLFE (r r) (R 1 µ 0)= − × − (4.30)

() ∑∑ +×−=
i

i
i

U
i

i

i
i

U
i

U
LR4

U
ic,4 τRfR)r(rM (4.31)

131

Normal Force Algorithm:

% Right legs and left legs are in contact with ground,

() ()if RF & & RR & & LF & & LR• • • •a a a a

 () ()if ~ 0 & & 0Roll Pitch= ==

 3
nSRF

1 2

M (2)F =
D (2) + D (2)

− (4.32)

 nSRR nSRFF = F (4.33)

 1
nSLF

2 3

M (2)F =
B (2) + B (2)

− (4.34)

 nSLR nSLFF = F (4.35)

() ()if 0& & ~ 0 || 0& & 0Roll Pitch Roll Pitch== = == ==

 2
nSRF

1 2

M (3)F =
C (3) + C (3)
− (4.36)

 1
nSRR

1 3

M (3)F =
B (3) + B (3)
− (4.37)

 nSLF nSRFF = F (4.38)

 nSLR nSRRF = F (4.39)

End

End

132

() ()if RF & & RR & & LF & & LR• •a a a o a o

% Right legs are in contact with ground and left legs are without,

1

1

0 B (3)
Coefficient =

C (3) 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (4.40)

[]1 2b = M (3) M (3)− − (4.41)

x = inv(Coefficient)*b (4.42)

 nSRFF = x(1) (4.43)

nSRRF = x(2) (4.44)

nSLFF = 0 (4.45)

nSLRF = 0 (4.46)

() ()elseif RF & & RR & & LF & & LR• •a o a o a a

%Left legs are in contact with ground and right legs without contact

3

3

0 D (3)
Coefficient =

E (3) 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (4.47)

[]3 4b = M (3) M (3)− − (4.48)

x = inv(Coefficient)*b (4.49)

 nSRFF = 0 (4.50)

nSRRF = 0 (4.51)

nSLFF = x(1) (4.52)

133

nSLRF = x(2) (4.53)

End

() () ()()if RF & & RR & & LF & & LR || LF & & LR• • • •a a a a o a o a

% Right legs are in contact with ground and either left front or rear leg is without,

1 2 3

1 2 3

1 2 3

1 2 3 4

0 B (2) B (2) B (2)
0 B (3) B (3) B (3)

Coefficient =
C (3) 0 C (3) C (3)
H (1) H (1) H (1) H (1)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (4.54)

[]T1 1 2b = M (2) M (3) M (3) System_Force_U(1)− − − − (4.55)

x = inv(Coefficient)*b (4.56)

 nSRFF = x(1) (4.57)

nSRRF = x(2) (4.58)

nSLFF = x(3) (4.59)

nSLRF = x(4) (4.60)

() ()() ()elseif RF & & RR || RF & & RR & & LF & & LR• • • •a a o a o a a a

%Either right font or rear leg is without contact and left legs are in contact,

1 2 3

1 2 3

1 2 3

1 2 3 4

D (2) D (2) 0 D (2)
D (3) D (3) 0 D (3)

Coefficient =
E (3) E (3) E (3) 0
H (1) H (1) H (1) H (1)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (4.61)

[]T3 3 4b = M (2) M (3) M (3) System_Force_U(1)− − − − (4.62)

134

x = inv(Coefficient)*b (4.63)

 nSRFF = x(1) (4.64)

nSRRF = x(2) (4.65)

nSLFF = x(3) (4.66)

nSLRF = x(4) (4.67)

End

135

4.1.5. Constraints

The normal force is positive, if the wheel remains in contact with

ground. Otherwise, it is equal zero.

nF > 0 if leg •a ; means that the wheel is in contact with ground.

nF 0= if leg oa ; means that the wheel is not in contact with ground.

During motion of rigid wheels on rigid surface, if motor exerts high

torque, then wheel will slip and provide low speed. Thus the traction force

must be less or equal the frictional force to make rigid wheels capable for

gripping with rigid surface.

m nF Fµ≤ (4.68)

136

137

Chapter Five

5. Results and discussion

This work concludes that the rover will be dynamically stable if it meets

this condition: "The universal moment at platform resulted from gravity force,

inertial forces and torques exerted on center of mass of each link, and normal

forces exerted on end-effectors must not equal the critical moments".

 The platform can be represented as a collection of effects of system

normal forces, system weights, and system inertial, since the backward dynamic

system propagates those forces and moments from outermost to innermost

link by link starting from end-effector till the platform link.

 The critical moment is the required moment to rotate the rover and lose

one side’s connections with ground in order to rotate the rover about the

opposite sides. The four critical moments about edges of contact points are

138

threshold limits evaluated by substituting in universal moment with zero

normal forces for the opposite side as shown in Figure 5.1,

Figure 5.1. Four critical moments

 The left legs are substituted zero normal forces in balance equations

4.14 and 4.8, respectively, in order to find the normals on the right critical

contact line,

2
nSR F

1

M (3)F = C (3)
− (5.1)

1
nRR

1

M (3)F = B (3)
− (5.2)

The critical moment required to turn the rover over the right side takes

place when the left legs are uncontact with ground and the equations 5.1 and

5.2 are substituted in equation F.8, we obtain

OU

FnRR

FnLR FnLF

FnRF

yU
C,Rightτ

C,Leftτ

C,Rearτ
C,Frontτ

zU

139

() ()
() () () ()
() () () ()

U U SRF U U SRR
C,Right 4RF SRF SRF 4RR SRR SRR

U U 4RF U U 3RF U U 4RR U U 3RR
c,4RF 4RF 4RF c,3RF 3RF 3RF c,4RR 4RR 4RR c,3RR 3RR 3RR

U U 2R U U 1R U U 0R U U 1L
c,2R 2R 2R c,1R 1R 1R c,0R 0R 0R c,1L 1L 1L

τ = r × R F + r × R F

r R f r R f r R f r R f

r R f r R f r R f r R f r

+

× + × + × + × +

× + × + × + × + ()
() () () ()

U U 2L
c,2L 2L 2L

U U 3LF U U 4LF U U 3LR U U 4LR
c,3LF 3LF 3LF c,4LF 4LF 4LF c,3LR 3LR 3LR c,4LR 4LR 4LR

U 4RF U 3RF U 4RR U 3RR U 4LF U 3LF U 4LR U
4RF 4RF 3RF 3RF 4RR 4RR 3RR 3RR 4LF 4LF 3LF 3LF 4LR 4LR 3LR 3LR

R f

r R f r R f r R f r R f

R τ R τ R τ R τ R τ R τ R τ R τ

× +

× + × + × + × +

+ + + + + + + 3LR

U 2R U 1R U 2L U 1L U 0R
2R 2R 1R 1R 2L 2L 1L 1L 0R 0RR τ R τ R τ R τ R τ

+

+ + + +

(5.3)

The rear legs are substituted zero normal forces in balance equations

4.20 and 4.8, respectively, in order to find the normals on the front critical

contact line,

3
nSRF

1

M (2)F = D (2)
− (5.4)

1
nSLF

2

M (2)F = B (2)
− (5.5)

The critical moment required to turn the rover over the front side takes

place when the rear legs are uncontact with ground and the equations 5.4 and

5.5 are substituted in equation F.8, we obtain

() ()
() () () ()
() () () ()

U U SRF U U SLF
C,Front 4RF SRF SRF 4LF SLF SLF

U U 4RF U U 3RF U U 4RR U U 3RR
c,4RF 4RF 4RF c,3RF 3RF 3RF c,4RR 4RR 4RR c,3RR 3RR 3RR

U U 2R U U 1R U U 0R U U 1L
c,2R 2R 2R c,1R 1R 1R c,0R 0R 0R c,1L 1L 1L

τ = r × R F + r R F

r R f r R f r R f r R f

r R f r R f r R f r R f r

× +

× + × + × + × +

× + × + × + × + ()
() () () ()

U U 2L
c,2L 2L 2L

U U 3LF U U 4LF U U 3LR U U 4LR
c,3LF 3LF 3LF c,4LF 4LF 4LF c,3LR 3LR 3LR c,4LR 4LR 4LR

U 4RF U 3RF U 4RR U 3RR U 4LF U 3LF U 4LR U
4RF 4RF 3RF 3RF 4RR 4RR 3RR 3RR 4LF 4LF 3LF 3LF 4LR 4LR 3LR 3LR

R f

r R f r R f r R f r R f

R τ R τ R τ R τ R τ R τ R τ R τ

× +

× + × + × + × +

+ + + + + + + 3LR

U 2R U 1R U 2L U 1L U 0R
2R 2R 1R 1R 2L 2L 1L 1L 0R 0RR τ R τ R τ R τ R τ

+

+ + + +

(5.6)

140

The right legs are substituted zero normal forces in balance equations

4.26 and 4.20, respectively, in order to find the normals on the left critical

contact line,

4
nSLF

3

M (3)F = E (3)
− (5.7)

3
nSLR

3

M (3)F = D (3)
− (5.8)

The critical moment required to turn the rover over the left side takes

place when the right legs are uncontact with ground and the equations 5.7 and

5.8 are substituted in equation F.8, we obtain

() ()
() () () ()
() () () ()

U U SLF U U SLR
C,Left 4LF SLF SLF 4LR SLR SLR

U U 4RF U U 3RF U U 4RR U U 3RR
c,4RF 4RF 4RF c,3RF 3RF 3RF c,4RR 4RR 4RR c,3RR 3RR 3RR

U U 2R U U 1R U U 0R U U 1L
c,2R 2R 2R c,1R 1R 1R c,0R 0R 0R c,1L 1L 1L c

τ = r R F r R F

r R f r R f r R f r R f

r R f r R f r R f r R f r

× + × +

× + × + × + × +

× + × + × + × + ()
() () () ()

U U 2L
,2L 2L 2L

U U 3LF U U 4LF U U 3LR U U 4LR
c,3LF 3LF 3LF c,4LF 4LF 4LF c,3LR 3LR 3LR c,4LR 4LR 4LR

U 4RF U 3RF U 4RR U 3RR U 4LF U 3LF U 4LR U 3
4RF 4RF 3RF 3RF 4RR 4RR 3RR 3RR 4LF 4LF 3LF 3LF 4LR 4LR 3LR 3LR

R f

r R f r R f r R f r R f

R τ R τ R τ R τ R τ R τ R τ R τ

× +

× + × + × + × +

+ + + + + + + LR

U 2R U 1R U 2L U 1L U 0R
2R 2R 1R 1R 2L 2L 1L 1L 0R 0RR τ R τ R τ R τ R τ

+

+ + + +

 (5.9)

The front legs are substituted zero normal forces in balance equations

4.26 and 4.14, respectively, in order to find the normals on the rear critical

contact line,

4
nSRR

2

M (2)F = E (2)
− (5.10)

2
nSLR

3

M (2)F = C (2)
− (5.11)

141

The critical moment required to turn the rover over the rear side takes

place when the front legs are uncontact with ground and the equations 5.10 and

5.11 are substituted in equation F.8, we obtain

() ()
() () () ()
() () () ()

U U SRR U U SLR
C,Rear 4RR SRR SRR 4LR SLR SLR

U U 4RF U U 3RF U U 4RR U U 3RR
c,4RF 4RF 4RF c,3RF 3RF 3RF c,4RR 4RR 4RR c,3RR 3RR 3RR

U U 2R U U 1R U U 0R U U 1L
c,2R 2R 2R c,1R 1R 1R c,0R 0R 0R c,1L 1L 1L c

τ = r × R F r R F

r R f r R f r R f r R f

r R f r R f r R f r R f r

+ × +

× + × + × + × +

× + × + × + × + ()
() () () ()

U U 2L
,2L 2L 2L

U U 3LF U U 4LF U U 3LR U U 4LR
c,3LF 3LF 3LF c,4LF 4LF 4LF c,3LR 3LR 3LR c,4LR 4LR 4LR

U 4RF U 3RF U 4RR U 3RR U 4LF U 3LF U 4LR U 3
4RF 4RF 3RF 3RF 4RR 4RR 3RR 3RR 4LF 4LF 3LF 3LF 4LR 4LR 3LR 3LR

R f

r R f r R f r R f r R f

R τ R τ R τ R τ R τ R τ R τ R τ

× +

× + × + × + × +

+ + + + + + + LR

U 2R U 1R U 2L U 1L U 0R
2R 2R 1R 1R 2L 2L 1L 1L 0R 0RR τ R τ R τ R τ R τ

+

+ + + +

The on-line executions of set of manipulations and locomotions are

presented here over various types of surface geometries; this chapter studies

and analyzes the normal forces, platform attitude, inertial effects, gravity forces,

and dynamic stability margin for different surface geometries, and variable

inertial accelerations, movable rover configurations under the considerations of

being symmetric or non-symmetric form. In the case of symmetric

configuration, the rover attitude (roll, pitch, an yaw) harmonizes the surface

geometries, otherwise the joint configurations importantly contribute in

attitude calculations. This chapter covers important examples provided with

tests required to integrate all factors with each others in algorithmic and

computational manner to deeply study their influence on dynamic stability.

142

1. Wheels, RCJ, LCJ, RDJ, and LDJ motions on flat surface.

This example studies the effect of acceleration of wheels and variable

configuration of joints. The rover locomoted forward on a flat surface and

subjected to three tests done in wheels accelerations 2, 4, and 5m/s2 as

represented in black, green, and blue curves, respectively. In addition, the rover

configurations of four manipulators are manipulated in symmetric manner as

shown in table 5.1:

Table 5.1. conf_1 → conf_2

1Rθ 2Rθ 3RFθ 3RRθ 1Lθ 2Lθ 3LFθ 3LRθ

conf_1 0 3
π - 3

π
3
π 0 3

π
3
π - 3

π

conf_2 0 0 - 4
π

4
π 0 0 4

π - 4
π

Moreover, the platform attitude (roll, pitch, and yaw) will be congruent

with the flat surface as shown in Figure 5.2

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
platform orientation angles w/2 universal frame

P
si
 (d

eg
)

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

P
hi
 (d

eg
)

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

Time (s)

Th
et
a
(d
eg

)

aw = 2m/s2

aw = 4m/s2

aw = 5m/s2

Figure 5.2. Platform attitude.

143

Furthermore as being symmetric and forward locomotion, the normal

forces exerted on the wheels are distributed in equal manner; the front legs

share the same value; and rear legs as well, as shown in Figure 5.3. The effects

of normal forces were significantly propagated from outermost link (wheels)

into innermost links (platform).

20 40 60 80 100 120 140 160 180 200
0

10

20
30

Normal force exerted on contact wheels

Fn
R

F

20 40 60 80 100 120 140 160 180 200
0
5

10
15

Fn
R

R

20 40 60 80 100 120 140 160 180 200
0

10

20

30

Fn
LF

20 40 60 80 100 120 140 160 180 200
0
5

10
15

Time (s)

Fn
LR

Figure 5.3. Normal forces

Figure 5.3 shows the front legs having the same vales, which increases in

direct proportional to wheeled accelerations and shoulders’ angle, while the rear

legs were decreasing with respect the mentioned factors, wheel accelerations

4m/s2 made the rear legs with 0.5294 Newton as normal forces at time 200s,

144

and 5m/s2 made the rear legs without contact with ground at times 123 second.

The loss of rear legs’ connections with ground endangers the situation and

threatens the rover’s stability; because the rover will undergo to lateral tumbling

about the front legs while the acceleration value was high.

In Figure 5.4, shows six dash curves which are critical moments where

the universal moment of platform (solid curves) must not touch the critical

curves in order to keep the system stable; otherwise the rover will tumble losing

its stability. The upper three dash curves indicate for critical moments required

to tumble about the rear legs, and the lower three dash curves indicate for

critical moments required to tumble the rover about the front legs.

The solid curves were firstly relatively far from the rear critical curves

when shoulders were open with 120° angle and conjunctional joints were

manipulated with 60°, but they were coming approach to the front critical

curves when shoulders joined with angle 90° and 0° conjunctional joints; solid

black curve was far the dash black curve during the travel time, this indicates

for the dynamic stable system and the four legs are in contact with ground.

While solid green curve was trying to touch the dash green curve during time

interval [160-200s]; this indicates for critical dynamical stability where the rear

145

preserved small pressure on surface. Finally, the solid blue curve touched the

dash blue curve at time 123 second; this indicates for dynamic instability where

the rear legs lost the contacts with ground.

0 20 40 60 80 100 120 140 160 180 200
-20

-15

-10

-5

0

5

10

15
exerted Moment about zu-axis of universal frame

TU
(3

) (
N
.m

)

Time (s)

Rear critical moments

Front critical moments

Figure 5.4. Universal moments and critical moments about zU axis.

In Figure 5.5, the universal moment about the yu-axis is fixed and zero

for three acceleration values as shown in solid curves, but the right and left

critical curves were coming approach when the shoulders were coming

approach to each other, and the RCJ and LCJ were approaching to zero angle.

146

0 20 40 60 80 100 120 140 160 180 200
-20

-15

-10

-5

0

5

10

15

20
exerted Moment about yu-axis of universal frame

TU
(2

) (
N

.m
)

Time (s)

D
J

an
gl

e
=

12
0o

C
J

an
gl

e
=

60
o

D
J

an
gl

e
=

90
o

C
J

an
gl

e
=

0o

Figure 5.5. Universal moments and critical moments about yU axis.

Since the rover was manipulated in symmetric manner in this case, the

effects of torques exerted on RCJ, LCJ, RDJ, and LDJ are cancelled as a result

for being moving in the same magnitudes and in opposite rotations with

respect to universal frame. The only effects of joint torques are those exerted

on wheels which propagated in serial form from outermost link (wheels) to

innermost link (platform); link by link. See Table 5.2 and Figure 5.6.

Table 5.2. Torques exerted on wheel.

Accelerations
in m/s2

4RF
4RFτ

(N.m)

4RR
4RRτ

(N.m)
4LF
4LFτ

(N.m)
4LR
4LRτ

(N.m)
2 0.0338 0.0338 -0.0338 -0.0338
4 0.0677 0.0677 -0.0677 -0.0677
5 0.0846 0.0846 -0.0846 -0.0846

147

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
Universal towc (N.m)

to
w
c xu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

to
w
c yu

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

Time (s)

to
w
c zu

Figure 5.6. Propagated torques about (xU,yU,zU) axes.

The gravity forces of link center of masses have no moment effect on

the platform, because the rover attitude is congruent with the flat surface. See

Figure 5.7.

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
Universal Moment of gravity force resulted from center of mass of links(N.m)

G
ra
vi
ty
 M

om
en

t xu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

G
ra
vi
ty
 M

om
en

t yu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

Time (s)

G
ra
vi
ty
 M

om
en

t zu

Figure 5.7. Propagated moment of gravity forces about (xU,yU,zU) axes.

148

However, the propagated moments of the inertial forces of wheels have

significant effects on platform as shown in Figure 5.8.

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
Universal Moment of inertial force resulted from center of mass of links(N.m)

In
er
tia

l M
om

en
t xu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

In
er
tia

l M
om

en
t yu

0 20 40 60 80 100 120 140 160 180 200
-6

-4

-2

0

Time (s)

In
er
tia

l M
om

en
t zu

Figure 5.8. Propagated moment of inertial forces about (xU,yU,zU) axes.

Finally, the normal forces exerted on wheels create moments about the

universal frames as shown in Figure 5.9

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
Universal moments resulted from normal forces (N.m)

N
F

m
om

en
t xu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

N
F

m
om

en
t yu

0 20 40 60 80 100 120 140 160 180 200
-15

-10

-5

0

Time (s)

N
F

m
om

en
t zu

Figure 5.9. Propagated moment of normal forces about (xU,yU,zU) axes.

149

2. Wheels, RFDJ, and RRDJ motions on step flat-inclined surface.

This example studies the effect of rover configurations on step flat-

inclined surface as shown in Figure 5.10; the right wheels locomoted on flat

surface and left wheels locomoted on inclined surface with angle 22.5°. The

rover locomoted forward and subjected to three tests done in RFDJ and RRDJ

as represented in black, green, and blue curves with wheel acceleration 2 m/s2,

respectively, and as shown in Table 5.3:

Figure 5.10. Rover posture on step flat-inclined surface.

Table 5.3. conf_0 → conf_0, conf_0 → conf_1, conf_0 → conf_2

1Rθ 2Rθ 3RFθ 3RRθ 1Lθ 2Lθ 3LFθ 3LRθ

conf_0 0 0 - 4
π

4
π 0 0 4

π - 4
π

conf_1 0 0 - 8
π

8
π 0 0 4

π - 4
π

conf_2 0 0 -18
π

18
π 0 0 4

π - 4
π

zG

OU

O4RK

O4LK

zU

OG

Ground
Reference

xU

xG

150

In this example, the first test is fix symmetric configuration as shown in

above table, but the configurations of four manipulators are manipulated in

non-symmetric manner in test 2 and test 3 as a result of rotation of right

shoulders (RDJ). The non-symmetric manner and the variance of elevations on

right and left sides significantly influence in platform attitude where the whole

rover undergoes under roll rotations as expressed in yU axis as shown in Figure

5.11:

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
platform orientation angles w/2 universal frame

P
si

 (d
eg

)

0 20 40 60 80 100 120 140 160 180 200
20

30

40

50

P
hi

 (d
eg

)

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

Time (s)

Th
et

a
(d

eg
)

conf0-->conf0
conf0-->conf1
conf0-->conf2

Figure 5.11. Platform attitude.

 The calculations take the three contact legs into account as being non-

symmetric configurations. Therefore, this example assumes right rear legs

without contact with surface.

151

0 20 40 60 80 100 120 140 160 180 200
0

5

10
Normal force exerted on contact wheels

Fn
R

F

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

Fn
R

R

0 20 40 60 80 100 120 140 160 180 200
30

40

50

Fn
LF

0 20 40 60 80 100 120 140 160 180 200
15

20

25

Time (s)

Fn
LR

Figure 5.12. Normal forces.

Above Figure shows the blue curve of right front leg becoming without

contact at times 118 second. It means that when the right shoulders were

closing to each other making the right front leg without contact with surface,

the rover rotated about single line delimited by the left legs. This process

threatens the dynamic rover stability as shown in Figure 5.13; the solid blue

curve touched the dash line at 118 second, thus the adopting of conf_2 (test 3)

will lead to dynamic unstable system. The solid green curve was trying to

approach from the lower dash green curve, thus it is about to reached to critical

152

dynamic stable system. Finally the black curves are relatively far from each

other and this indicates for fully dynamically stable system.

0 20 40 60 80 100 120 140 160 180 200
-12

-11.5

-11

-10.5

-10

-9.5

-9

-8.5

-8

-7.5
exerted Moment about yu-axis of universal frame

TU
(2

) (
N

.m
)

Time (s)

Left critical moments

Figure 5.13. Universal moments and critical moments about yU axis.

The locomotion of wheels and the manipulation of RDJ yielded torques

propagated into universal platform frame as shown in Figure 5.14. As well as

the constant black curves indicate for constant wheels torques and symmetric

manner. However, the interior manipulations in shoulders disturbed the

symmetric form and add manipulation effects as shown in figure bellow.

153

0 20 40 60 80 100 120 140 160 180 200
0.05

0.06

0.07

0.08
Universal towc (N.m)

to
w
c xu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

to
w
c yu

0 20 40 60 80 100 120 140 160 180 200
0.07

0.08

0.09

0.1

Time (s)

to
w
c zu

Figure 5.14. Propagated torques about (xU,yU,zU) axes.

The gravity forces of link center of masses yielded moment effect on the

platform, because the rover attitude is rotating about yU-axis as seen in Figure

5.15.

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
Universal Moment of gravity force exerted on center of mass of links(N.m)

G
ra

vi
ty

 M
om

en
t xu

20 40 60 80 100 120 140 160 180 200
-4

-2

0

G
ra

vi
ty

 M
om

en
t yu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

Time (s)

G
ra

vi
ty

 M
om

en
t zu

Figure 5.15. Propagated moment of gravity forces about (xU,yU,zU) axes.

154

The moment of inertial force is resulted from the locomotive wheels and

manipulation of RDJ, Figure 5.16 shows that the black curves are constant

values because of symmetric manner and fixed manipulations, while the rest

curves are variable with respect to RDJ manipulations.

0 20 40 60 80 100 120 140 160 180 200
-1.5

-1

-0.5
Universal Moment of inertial force resulted from center of mass of links(N.m)

In
er

tia
l M

om
en

t xu

0 20 40 60 80 100 120 140 160 180 200
-1.5

-1

-0.5

In
er

tia
l M

om
en

t yu

0 20 40 60 80 100 120 140 160 180 200
-2

-1.5

-1

Time (s)

In
er

tia
l M

om
en

t zu

Figure 5.16. Propagated moment of inertial forces about (xU,yU,zU) axes.

Finally, the effect of normal forces is simulated in Figure 5.17 which

shows the black curves with constant values because of constant normal forces,

continuous connection with surface during the travel, and fixed manipulation.

However, the blue curves suddenly and significantly changed at time 118s as a

result of discontinuity occurred between the right front leg and surface; In fact

as explained previously, this time the rover lost its dynamic stability.

155

0 20 40 60 80 100 120 140 160 180 200
-2.5

-2

-1.5
Universal moments resulted from normal forces (N.m)

N
F

m
om

en
t xu

0 20 40 60 80 100 120 140 160 180 200
-5.5

-5

-4.5

-4

N
F

m
om

en
t yu

0 20 40 60 80 100 120 140 160 180 200
-6.5

-6

-5.5

-5

Time (s)

N
F

m
om

en
t zu

Figure 5.17. Propagated moment of normal forces about (xU,yU,zU) axes.

156

3. Wheels, RDJ, and LDJ Motions on Inclined Surface.

This example studies the effect of rover elevation on inclined surface

with angle 20.7° as shown in Figure 5.18; the rover locomoted forward and

subjected to three tests done in RDJ and LDJ as represented in black, green,

and blue curves with wheel acceleration 2.5 m/s2 as shown in Table 5.4:

Figure 5.18. Rover’s shoulders closing on inclined surface.

Table 5.4. conf_0 → conf_0, conf_0 → conf_1, conf_0 → conf_2

1Rθ 2Rθ 3RFθ 3RRθ 1Lθ 2Lθ 3LFθ 3LRθ

conf_0 0 0 - 4
π

4
π 0 0 4

π - 4
π

conf_1 0 0 - 9
π

9
π 0 0 9

π - 9
π

conf_2 0 0 -18
π

18
π 0 0 18

π -18
π

157

For being symmetric configurations in three tests, the platform attitude

was congruent to the inclination of surface irrespective to the shoulders

opening or joining, as shown in Figure 5.19

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
platform orientation angles w/2 universal frame

P
si

 (d
eg

)

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

P
hi

 (d
eg

)

0 20 40 60 80 100 120 140 160 180 200
-22

-21

-20

-19

Time (s)

Th
et

a
(d

eg
)

conf0-->conf0
conf0-->conf1
conf0-->conf2

Figure 5.19. Platform attitude.

Figure 5.20 shows that the front legs share the same normal forces and

higher values in comparison to the rear legs, as a result of wheel accelerations

and shoulders joining. On other words, high acceleration and lower shoulder

angles yield pressure on the single line delimited by contact points of front legs.

The following picture shows constant normal forces regarding to constant

manipulations (black curve), and shows variable normal forces with respect to

acceleration (green and blue curves). However, the front normal forces

158

represented in blue curve shows constant normal forces after disconnection

occurred between the rear legs and surface at time 137.

20 40 60 80 100 120 140 160 180 200
0

10

20

30
Normal force exerted on contact wheels

Fn
R

F,
 F

nL
F

20 40 60 80 100 120 140 160 180 200
0

10

20

30

Fn
R

R
, F

nL
R

Figure 5.20. Normal forces.

Above Figure shows the blue curves denoting for rear legs were

becoming without contact at times 137 second. It means that when the

shoulders on both sides were closing to each other, the rover elevation with

respect to inclined surface got higher and the pressure exerted on front legs got

increase with taking into consideration the significant wheeled accelerations,

and then the rover rotated about single line delimited by the front legs making

159

the rear legs without contact with surface. This process threatens the dynamic

rover stability as shown in Figure 5.21; the solid blue curve touched the dash

line at 137 second, thus the adopting of third test will lead to dynamic unstable

system. The solid green curve is trying nearly approaching from the dash green

curve, thus it reached to critical dynamic stable system. Finally the black curves

are relatively far from each other and this indicates for fully dynamically stable

system.

0 20 40 60 80 100 120 140 160 180 200
-15

-10

-5

0

5

10
exerted Moment about zu-axis of universal frame

TU
(3

) (
N

.m
)

Time (s)

Front critical moment

Rear critical moment

Figure 5.21. Universal moments and critical moments about zU axis.

The effects of propagated moments resulted from gravity forces, inertial

forces exerted on the center of mass of links, normal forces exerted on wheels

are simulated in Figure 2.22, 2.23, and 2.24 respectively.

160

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
Universal Moment of gravity force exerted on center of mass of links(N.m)

G
ra

vi
ty

 M
om

en
t xu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

G
ra

vi
ty

 M
om

en
t yu

0 20 40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

Time (s)

G
ra

vi
ty

 M
om

en
t zu

Figure 5.22. Propagated moment of gravity forces about (xU,yU,zU) axes.

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
Universal Moment of inertial force exerted on center of mass of links(N.m)

In
er

tia
l M

om
en

t xu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

In
er

tia
l M

om
en

t yu

0 20 40 60 80 100 120 140 160 180 200
-4

-3.5

-3

-2.5

Time (s)

In
er

tia
l M

om
en

t zu

Figure 5.23. Propagated moment of inertial forces about (xU,yU,zU) axes.

 Figure 5.24 shows significant and sudden change occurred in blue curve

about zU axis, as a result of losing the connection between rear legs and surface;

and this simply simulates the unstable situation.

161

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
Universal normal forces moments exerted on normal forces (N.m)

N
F

m
om

en
t xu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

N
F

m
om

en
t yu

0 20 40 60 80 100 120 140 160 180 200
-5

-4

-3

-2

Time (s)

N
F

m
om

en
t zu

Figure 5.24. Propagated moment of normal forces about (xU,yU,zU) axes.

162

4. Wheels motion on flat and inclined surface.

This example can be briefed in three periods; firstly, a flat period when

the rover moved over flat surface and the platform attitude were congruent

with surface. Secondly, a transition period when the rover suddenly faced an

inclined surface with inclined angle 30° at time 100 second, the front wheels

started to move on inclined surface while rear legs were still on flat surface and

the platform attitude was under rotation. Finally, an inclined period when the

rear legs traversed the flat surface and the platform attitude became congruent

with inclined surface.

The configurations are in fixed symmetric forms with different open

shoulders 90°, 45°, 20°, respectively, as shown in Table 5.5.

Table 5.5. conf_0 → conf_0, conf_1 → conf_1, conf_2 → conf_2

1Rθ 2Rθ 3RFθ 3RRθ 1Lθ 2Lθ 3LFθ 3LRθ

conf_0 0 0 - 4
π

4
π 0 0 4

π - 4
π

conf_1 0 0 - 8
π

8
π 0 0 8

π - 8
π

conf_2 0 0 -18
π

18
π 0 0 18

π -18
π

The time delay between the front wheel and rear leg can be computed as

fellow

163

3 3RF 3 3RR
delay_R

a sinθ a sinθt 0.5vv
− +

=
×

3 3LF 3 3LR
delay_L

a sinθ a sinθt 0.5vv
−

=
×

Where, vv is wheel acceleration value, in this example vv = 0.5 m/s2 is chosen

small in order to make the transition period longer and to study the comparisons clearly

and precisely. The three tests have 1.5042, 1.2649, and 0.7454 second as time delays

between front and rear legs. During the transition period, the rover undergoes to pitch

rotation. The time of rotation is a function of shoulder angle and wheel acceleration. In

Figure 5.25, the black curve stands for first test and it takes longer rotation time; and blue

curve accomplishes its rotation faster. Then after the rear legs traversed the flat surface,

the steady pitch attitude takes place and the whole rover becomes congruent with the

surface inclination.

20 40 60 80 100 120 140 160 180 200

-30

-25

-20

-15

-10

-5

0

platform orientation angles w/2 universal frame

Time (s)

Th
et
a
(d
eg

)

Figure 5.25. Platform attitude.

164

As being symmetric form and moving on flat surface, the normal forces

for front legs were equally greater than the rear legs as a result of inertial

effects. However at the time of contacts with incline surface, the normal forces

of front legs were gradually decreasing during the transition period as shown in

Figure 5.26. The front legs represented in blue curve shows it becoming zero

during the transition period exactly, whereas the rear legs became fully

responsible for the rover heaviness see Figure 5.27.

20 40 60 80 100 120 140 160 180 200
0

10

20

30
Normal force exerted on contact wheels

Fn
R

F,
 F

nL
F

20 40 60 80 100 120 140 160 180 200
0

10

20

30

Fn
R

R
, F

nL
R

Figure 5.26. Normal forces.

165

Figure 5.27. Rear legs lost the contact with ground.

Figure 5.28 shows the simulation of dynamic stability for three tests; in

first test represented in solid black curve which is far from the critical curves;

while green curves were somehow close trying to reach the critical situation;

and finally the dynamic instability occurred in third test represented in solid

blue curve touching the rear critical curves represented in dash blue curve

during the time of transition period; where it shows the universal moment at

platform equal the rear critical moment. Thus, the open shoulders with 20° is

not capable for moving from flat to inclined surface with an angle 30°. The

zooming for transition period keeps a small distance that separates the

universal moments and the critical moments for all boarders, else rear critical

moments regarding to third test.

166

0 20 40 60 80 100 120 140 160 180 200
-15

-10

-5

0

5

10

15
exerted Moment about zu-axis of universal frame

TU
(3

) (
N

.m
)

Time (s)

Front critical moment

Rear critical moment

Figure 5.28. Universal moments and critical moments about zU axis.

167

5. Wheels motion on sinusoidal surface.

This example studies the effect of wheel acceleration locomoted on

sinusoidal surface subjected to three tests done in wheels accelerations 1, 2, and

3 m/s2 as represented in black, green, and blue curves, respectively. In addition,

the rover configurations of four manipulators were manipulated in fixed

symmetric manner as shown in Table 5.6:

Table 5.6. conf_0 → conf_0

1Rθ 2Rθ 3RFθ 3RRθ 1Lθ 2Lθ 3LFθ 3LRθ

conf_0 0 0 - 6
π

6
π 0 0 6

π - 6
π

There is fixed 60° angle between open shoulders on both sides, thus the

delay time between the front and rear legs are 0.8944, 0.6325, and 0.5164

second. The rear legs share the elevations of front legs after the elapse of those

delay times. The pitch orientations for three speeds were simulated in Figure

5.29; it shows rover was ascending the sinusoidal surface with negative angle

and descending with positive angle with same amplitude for three speeds and

different time delay between those speeds. Zero amplitude of pitch angle

denotes the top of concave and bottom of convex.

168

20 40 60 80 100 120 140 160 180 200
-15

-10

-5

0

5

10

15
platform pitch angle w/2 universal frame

Time (s)

Th
et

a
(d

eg
)

aw = 1 m/s2
aw = 2 m/s2
aw = 3 m/s2

Figure 5.29. Pitch angle.

The normal forces for front legs were equal and greater than equal rear

legs in ascending and descending locomotion as a result of high acceleration

effect of wheels as shown in Figure 5.30. The amounts of wheel acceleration

are chosen large enough to overcome the gravity force which decelerates the

rover at ascending motion, and in order to study their effects on dynamic

stability. The normal forces of rear legs with highest speed (3 m/s2) represented

in blue curve were zero during the travel else in the bottom of convex when

the rover moves half ascending travel where the pitch angle -11.3°; while

regarding to second test (2 m/s2) represented in green, the normal forces of

169

rear legs became zero for shorter time in comparison with blue and green

curves as a result of less acceleration.

20 40 60 80 100 120 140 160 180 200
0

10

20

30
Normal force exerted on contact wheels

Fn
R

F,
 F

nL
F

20 40 60 80 100 120 140 160 180 200

0

2

4

6

8

10

12

Fn
R

R
, F

nL
R

Figure 5.30. Normal forces.

Figure 5.31 shows that the universal moment far from the critical

moments in the case of black curves (1 m/s2), so that this test is considered

dynamically stable throughout the travel. In the case of 2 m/s2 the solid green

curve was touch the lower dash curve some part of travel time, thus the

second test is considered dynamic instable. However, in the case 3 m/s2 the

universal moment represented in solid blue curve touched the dash blue curve

170

most of the time and this concludes the dynamic unstable system, else the

periodic time interval shown in Figure 5.32.

0 20 40 60 80 100 120 140 160 180 200
-20

-15

-10

-5

0

5

10
exerted Moment about zu-axis of universal frame

TU
(3

) (
N

.m
)

Time (s)

Figure 5.31. Universal moments and critical moments about zU axis

10 15 20 25 30

-12

-11.5

-11

-10.5

-10

exerted Moment about zu-axis of universal frame

TU
(3
) (
N
.m

)

Time (s)
Figure 5.32. Zooming for universal moments and critical moments about zU axis

171

The torques exerted on wheels are simulated for three tests as shown in

Figure 5.33, those values are in direct proportional to wheel acceleration.

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
Universal towc (N.m)

to
w
c xu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

to
w
c yu

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

Time (s)

to
w
c zu

Figure 5.33. Propagated torques about (xU,yU,zU) axes.

The effect of moment of inertial forces are simulated in constant curves

as a result of constant configurations, and it in direct proportional to wheel

acceleration as shown in Figure 5.34

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
Universal Moment of inertial force exerted on center of mass of links(N.m)

In
er
tia

l M
om

en
t xu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

In
er
tia

l M
om

en
t yu

0 20 40 60 80 100 120 140 160 180 200
-6

-4

-2

0

Time (s)

In
er
tia

l M
om

en
t zu

Figure 5.34. Propagated moment of inertial forces about (xU,yU,zU) axes.

172

The effect of moment of gravity forces are simulated in sinusoidal

curves as a result of sinusoidal attitude, and it not in direct proportional to

wheel acceleration, but platform attitude angles as shown in Figure 5.35

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
Universal Moment of gravity force exerted on center of mass of links(N.m)

G
ra

vi
ty

 M
om

en
t xu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

G
ra

vi
ty

 M
om

en
t yu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

Time (s)

G
ra

vi
ty

 M
om

en
t zu

Figure 5.35. Propagated torques about (xU,yU,zU) axes.

The effect of moment resulted from normal forces is simulated in Figure

5.36, and it is appeared in sinusoidal curves. The third test yielded the highest

moment about zU axis as a result of highest acceleration. The top of concave is

non-uniform due to the normal force constraint.

173

0 20 40 60 80 100 120 140 160 180 200
-1

0

1
Universal normal forces moments exerted on normal forces (N.m)

N
F

m
om

en
t xu

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

N
F

m
om

en
t yu

0 20 40 60 80 100 120 140 160 180 200
-15

-10

-5

0

Time (s)

N
F

m
om

en
t zu

Figure 5.36. Propagated moment of normal forces about (xU,yU,zU) axes.

174

6. Wheels, RDJ, LDJ motions on random surface.

This example studies the effect of wheel acceleration locomoted on

random surface subjected to two tests done in wheels accelerations 0.05 and 1

m/s2 as represented in black and blue curves, respectively. In addition, the

rover configurations of four manipulators are manipulated in symmetric

manner as shown in Table 5.7:

Table 5.7. conf_0 → conf_1

1Rθ 2Rθ 3RFθ 3RRθ 1Lθ 2Lθ 3LFθ 3LRθ

conf_0 0 0 - 4
π

4
π 0 0 4

π - 4
π

conf_1 0 0 - 6
π

6
π 0 0 6

π - 6
π

This example considered symmetric configurations where the right and

left shoulders were joined closely from 90° till 60°. Figure 5.37 simulated the

platform orientation with respect to universal frame; it reflects the geometry of

random elevations surface; the rover moved on flat surface, and ascended and

descended non-uniform surface; the rear legs moved on the front elevations

after delay time 1 second; In addition, it shows the platform subjected to three

kinds of rotations:

175

1) Zero attitude, where the platform frame is contingent with universal

frame during the interval [0-16s] and [111-134s] and [179-200s].

2) Clockwise rotations during the interval [17-110s], maximum angle -

55.2° at time 100s.

3) Counter-clockwise rotations during the interval [135-200s], maximum

positive angle reached to 48.26° at time 178s.

20 40 60 80 100 120 140 160 180 200
-60

-40

-20

0

20

40

60
Platform pitch angle w/2 universal frame

Time (s)

Th
et

a
(d

eg
)

Figure 5.37. Platform pitch angle.

Figure 5.38 simulated the normal forces exerted on four legs for two

tests represented in black and blue curve. The front legs represented in black

curves were without contact during the interval [86-100s] and rear legs were

without contacts during the time interval [169-178s]. While the front legs

represented in blue curve were in contact with surface during travel times but

the rear legs were without contacts during the time interval [164-178s].

176

20 40 60 80 100 120 140 160 180 200
0

10

20

30
Normal force exerted on contact wheels

Fn
R

F,
 F

nL
F

20 40 60 80 100 120 140 160 180 200
0

10

20

30

Fn
R

R
, F

nL
R

Figure 5.38. Normal forces

Figure 5.39 simulated the universal moments exerted on platform

represented in solid curves, and front and rear critical moments represented on

dash curves. It shows the solid black curve (0.05 m/s2) touched the rear critical

moment during time interval [86-100s] In other words, the front legs were

without contact with surface and the whole rover rotated about the rear legs,

thus the rover was dynamically unstable system during this interval. It also

shows the solid black curve touched the front critical moment during the time

interval [169-178s], and analytically it means that the rover rotated about the

177

front legs making the it dynamically unstable system. Moreover, it shows the

solid blue curve (1 m/s2) touched the front critical moment during time interval

[164-178s], therefore, the rover is dynamically unstable during this interval.

0 20 40 60 80 100 120 140 160 180 200
-15

-10

-5

0

5

10

15
exerted Moment about zu-axis of universal frame

TU
(3

) (
N

.m
)

Time (s)

Rear critical moments

Front critical moments

Figure 5.39. Universal moments and critical moments about zU axis

These imply the advantages and disadvantages of inertial accelerations of

wheels and the rover configurations. The higher acceleration (1 m/s2)

positively sustained the stability during interval [86-100s], but it negatively

speeded the process of instability during interval [164-178s], whereas less

acceleration (0.05 m/s2) delayed the instability for 5 second.

178

According to rover configurations, it was used the same configurations

for the two acceleration tests, and it shows that open shoulders with 90° as

shown in time 0s is much safer and secure for keeping a significant distance

between the universal moments and critical moments curves of both sides,

while open shoulders with 60° endangered the system for keeping small

distance between the universal moments and critical moments of both sides.

Therefore, imposing control on configurations and accelerations evades the

danger of tumbling.

179

Chapter Six

6. Conclusion

This thesis exhibits a new mechanical design for a quadruped mobile

robot. The four identical wheeled legs were gaining high level coordinations in

various aspects. This feature contributed in increasing the rover speed stably

and smoothly on uneven terrain. Besides, this work inherited the advantages

and eliminated the drawbacks of both legged and wheeled locomotion in

computational manner, for being equipped with wheels and legs

simultaneously. Thus, the platform a base link undergoes under a smooth and

soft locomotion in relative to four wheeled-legged manipulators and surface

geometries.

The platform attitudes were evaluated with respect to platform universal

frame. The changes occurred on joint configurations and different ground

elevations disturb the symmetric posture, and rotate the platform smoothly

leaving the universal axis by roll, pitch, and yaw angle.

180

Newton-Euler Recursive method was employed, and it provided an on-

line monitoring system for the sources of dynamic forces and moments exerted

on each link of the four manipulators. The decomposition of universal forces

and moments made the point clearer throughout studying the source of each

force and moment exerted on the universal frame. The universal moment,

which acts about platform link of the rover, is resulted from the normal forces

acted at wheels, gravity forces, inertial forces and torques exerted on the center

of mass of each link. When rover faced random surface during motion, a

change has been occurred in dynamic disturbances at the wheels generating

considerable moments about the platform link expressed in universal frame.

Because four legs are considered indeterminate system, in this thesis the

normal forces were evaluated for three contact legs in the case the non-

symmetric rover. However, in the case of symmetric configurations the normal

forces are distributed equally between the sides which sharing the same the

inertial forces, ground geometries, and platform attitude. Thus regarding to

symmetric four legs, normal forces were evaluated by considering two legs

sharing the same value. The results simulated the effect of high acceleration on

the connectivity between wheels and surface.

181

A new dynamic stability criterion was presented for rover operating

arbitrary on various shapes of surfaces, and variable rover configurations. In

addition, this criterion provided on-line calculations for the effect of rover

configurations, various surface geometry, platform attitudes, kinematic values,

dynamic effects, and variable ground normal forces.

The gravity force is static feature, and it is not influenced with

acceleration at all, but its moment significantly effects on the dynamic stability

in the presence of changing in platform attitude. While inertial force is dynamic

feature, and it is not influenced with ground geometry and platform attitude,

and it significantly effects on the dynamic stability.

The simulation model was presented for a various examples exploiting

MatLab which provided on-line calculations for predicting the behavior of a

physical system under a variety of surface geometries and rover configurations.

In future work, inverse kinematics can be exploited for determining the

generalized coordinates (angles of joints), and then evaluating the required

rover configurations to enable the uncontact leg to select its foothold on

182

surface. Furthermore, the platform attitudes can be evaluated as function of

rover configurations, surface geometries, and dynamic forces and moments. In

addition, normal forces exerted on four legs should be evaluated in the case of

non-symmetric manner in future work.

183

References

1. Wettergreen, D., Thorpe, C., Whittaker, R., “Exploring Mount Erebus by
walking robot”, Robotics and Autonomous Systems, vol. 11, pp. 171-85,
December 1993.

2. Peterson, K. and Ward, C., “An Autonomous Mobile robot to Perform

Waste Drum Inspections”, Robotics and manufacturing – Recent Trends
in Research, Education, and Applications, ASME Press, vol 5, pp. 637-
641, 1994.

3. Gonzalez de Santos, P., Garcia, E., Estremera, J. and Armada, M. A.,

“SILO6: Design and configuration of a legged robot for humanitarian
demining”, IARP Workshop on Robots for Humanitarian Demining,
Vienna, Austria, 3-5 November 2002.

4. Papadopoulos, E. and Sarkar, S., “On the Dynamic Modeling of an

Articulated Electrohydraulic Forestry Machine”, Proc. of the 1996 AIAA
Forum on Advanced Developments in Space Robotics, Madison, WI,
August 1-2, 1996.

5. Iagnemma, K., Shibly, H., and Dubowsky, S., “On-line Terrain

Parameter Estimation for Rovers”, IEEE International Conference on
Robotics and Automation, Washington D.C, USA, 2002.

6. James, J. Z., David, B. M., Jeffrey M. W., June F. Z., Fred B. O., Kelly J.

M., Gerald, M. H., Phillip A., Dennis J. E., and Thomas, W. G.,
“Exploration Rover Concepts and Development Challenges”, NASA
TM-2005-213555, AIAA-2005-2525, Orlando, Florida, March 2005.

7. Calafiore, G., Indri, M., Bona, B., “Robot Dynamic Calibration: Optimal

Excitation Trajectories and Experimental Parameter Estimation”,
Journal of Robotic Systems, Torino, Italy, vol. 18, no. 2, pp. 55-68, 2001.

184

8. Sujan, A. V., and Dubowsky, S., “An Optimal Information Method for
Mobile Manipulator Dynamic Parameter Identification”, IEEE/ASME
Transactions in Mechatronics, vol. 2, no. 2, June 2003.

9. Fukuoka, Y., Kimura, H., and Cohen, A., “Adaptive Dynamic Walking of

a Quadruped Robot on Irregular Terrain Based on Biological Concepts”,
The International Journal of Robotics Research, vol. 22, no. 3-4, pp. 187-
202, March 2003.

10. Goswami, A., “Postural stability of biped robots and the foot rotation

indicator (FRI) point”, International Journal of Robotics Research, vol.
18, no. 2, pp. 523-533, 1999.

11. Papadopoulos, E., Sarkar, S., “The Dynamic of an Articulated Forestry

Machine and its Applications”, Proceedings of the IEEE International
Conference on Robotics and Automotion, pp. 323-328, Albuquerque,
NM, April 1997.

12. Matijevic J., “Mars Pathfinder Microrover - Implementing a Low Cost

Planetary Mission Experiment”, Proceeding of the Second IAA
International Conference on Low-Cost Planetary Missions, John Hopkins
Applied Physics Laboratory, Maryland, USA, pp IAA-L-0510, April
1996.

13. Carr, M., “Workshop on Mobility”, Report. Ames Research Center, July

2, 1995.

14. Hayati, S., Volpe, R., Backes, P., Balaram, J., and Welch, W.,

“Microrover Research for Exploration of Mars”, AIAA Forum on
Advanced Developments in Space Robotics, 1996.

15. Mars Pathfinder: http://mars.jpl.nasa.gov.

16. Jeffrey S. Norris, Mark W. Powell, Marsette A. Vona, Paul G. Backes,

Justin V. Wick., “Mars Exploration Rover Operations with the Science
Activity Planner”, Proceedings of the 2005 IEEE, International

185

Conference on Robotics and Automation, pp.4629-4634, Barcelona,
Spain, April 2005.

17. Mishkin, A., Morrison, J., Nguyen, T., Stone, H., Cooper, B., and

Wilcox, B., “Experiences with operations and autonomy of the Mars
Pathfinder Microrover”, IEEE Aerospace Conference, pp.337-51, 1998.

18. Stroupe, Ashley W., Singh, S., Simmons, R., Smith, T., Tompkins, P.,

Verma, V., Vitti-Lyons, R., Wagner, M., “TECHNOLOGY FOR
AUTONOMOUS SPACE SYSTEMS”, The Robotics Institute Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, CMU-RI-TR-00-02,
September 2002. See page 76.

19. http://www.windows.ucar.edu/tour/link=/space_missions/mars/mars_expl

oration_rover/mer_vehicles.html, May, 2004.

20. Iagnemma, K., Shibly, H., Rzepniewski, A., and Dubowsky, S.,

“Planning and Control Algorithms for Enhanced Rough-Terrain Rover
Mobility”, Proceedings of the Sixth International Symposium on
Artificial Intelligence, Robotics and Automation in Space, i-SAIRAS,
2001.

21. Iagnemma, K., Rzepniewski, A., Dubowsky, S., Huntsberger, T.,

Schenker, P., “Mobile Robot Kinematic Reconfigurability for Rough-
Terrain”, Proceedings of the SPIE Symposium on Sensor Fusion and
Decentralized Control in Robotic Systems III, Boston, September 2000.

22. Farritor, S., Zhang, J., “A Modular Robotic Infrastructure to Support

Planetary Surface Operations”, The American Institute Of Aeronautics
and Astronautics, Department of Mechanical Engineering, University of
Nebraska, Lincoln, USA, January 9, 2000.

23. Yoneda, K. and Hirose, S. “Three-dimensional stability criterion of

integrated locomotion and manipulation”. Journal of Robotics and
Mechatronics, vol. 9, no. 4, pp. 267-274, 1997.

186

24. Lamon, P. and Siegwart, R., “Wheel Torque Control in Rough Terrain -
Modeling and Simulation”, In Proceedings of the IEEE International
Conference on Robotics and Automation, Barcelona, 2005.

25. Meghdari, A., Mahboobi, S. H., and Gaskarimahalle, A. L., “Dynamic

Modeling of ‘CEDRA’ Rescue Robot on Uneven Terrains”, Proceedings
of IMECE2004-59239, ASME International Mechanical Engineering
Congress, Anaheim, California, 13-19 November 2004.

26. Hardarson, F., “Stability analysis and synthesis of statically balanced

walking for quadruped robots”. PhD thesis, The Royal Inst. of
Technology, 100 44 Stockholm, Sweden, June 2002.

27. Michel, O., “WebotsTM: Professional Mobile Robot Simulation”,

International Journal of Advanced Robotic Systems, vol. 1, no. 1, pp. 39-
42, ISSN 1729-8806, 2004.

28. Lee, Y., Hirose, S., “Three-Legged Walking for Fault Tolerant

Locomotion of a Quadruped Robot with Demining Mission”, Proceedings
of the IEEE/RSJ, International Conference on Intelligent Robots and
Systems, pp. 973-978, 2000.

29. Hayati, S., Volpe, R., Backes, P., Balaram, J., Welch, R., Ivlev, R.,

Tharp, G., Peters, S., Ohm, T., Petras, R., Laubach, S., “The Rocky 7
Rover: A Mars Sciencecraft Prototype”, IEEE International Conference
on Robotics and Automation, pp. 2458–2464, 1997.

30. Garcia, E., Estremera, J., and Gonzalez-de-Santos, P., “A Classification

of Stability Margins for Walking Robots”, Industrial Automation
Institute, Madrid, Spain, 2002.

31. Garcia, E., Estremera, J. and Gonzalez de Santos, P., “A comparative

study on stability margins for walking machines”. Robotica, vol. 20, pp.
595-606, 2002.

187

32. McGhee, R. B. and Frank, A. A., “On the stability of quadruped creeping
gaits”, Mathematical Biosciences, University of southern California, Los
Angeles, California, vol. 3, pp. 331-351, October, 1968.

33. Messuri, D. and Klein, c., “Automatic body Regulation for Maintaining

Stability of a Legged Vehicle During Rough-Terrain Locomotion”, IEEE
Journal of Robotics and Automation, vol. RA1, no. 3, pp.132-141,
September, 1985.

34. Nagy, P. V., Desa, S., Whittaker, W. L., “Energy-Based Stability

Measures for Reliable Locomotion of Statically Stable Walkers: Theory
and Application”, The International Journal of Robotics Research, vol.
13, no.3, pp. 272-287, June 1994.

35. Hirose, S. Tsukagoshi, H. and Yoneda, K., “Normalized energy stability

margin: generalized stability criterion for walking vehicles”,
Proceedings of Int. Conf. On Climbing and Walking Robots, Brussels,
pp. 71-76, November, 1998.

36. Hirose, S. Tsukagoshi, H. and Yoneda, K., “Normalized Energy Stability

Margin and its Contour of Walking Vehicle on Rough Terrain”,
Proceedings of the IEEE, International Conference on Robotics and
Automation (ICRA), Seoul, Korea, pp. 181-186 May 2001.

37. Gonzalez, P., Santos, de., Jimenez, M., A. and Armada, M.A., "Dynamic

Effects in Statically Stable Walking Machines", Journal of Intelligent and
Robotic Systems, vol. 23, no 1, pp. 71- 85, 1998.

38. Orin, D. E., McGhee, R. B., and Jaswa, V. C., "Interactive Computer-

Control of a Six-Legged Robot Vehicle with Optimization of Stability,
Terrain Adaptability, and Energy," Proc. of 1976 IEEE Conference on
Decision and Control, Clearwater Beach, Florida, pp. 382-391,
December, 1976.

39. Vukobratovic, M., Frank, A.A. and Juricic, D. “On the stability of byped

locomotion”, IEEE Transactions on Biomedical Engineering, vol. 17, no.
1, pp. 25-36. 1970.

188

40. Kang. D.O., Lee, Y.J., Lee, S.H, Hong, Y.S. and Bien, Z. “A study on an
adaptive gait for a quadruped walking robot under external forces”.
Proceedings of the IEEE International Conference on Robotics and
Automation, Albuquerque, New Mexico, pp. 2777-2782, 1997.

41. Lin, B. S. and Song, S. M. “Dynamic modeling, stability and energy

efficiency of a quadrupedal walking machine”, IEEE Conference on
Robotics and Automation, pp. 367- 373, Atlanta, Georgia, 1993.

42. Yoneda, K. and Hirose, S., “Tumble Stability Criterion of Integrated

Locomotion and Manipulation”, Proceedings IROS 96, pp. 870-876,
1996.

43. Zhou, D., Low, K.H. and Zielinska, T. “A stability analysis of walking

robots based on leg-end supporting moments”. Proceedings of IEEE
International Conference on Robotics and Automation. San Francisco,
CA. pp. 2834-2839, April 2000.

44. Papadopoulos, E.G., Rey, D.A., "A New Measure of Tipover Stability

Margin for Mobile Manipulators", In Proceedings of the IEEE Internal
Conference on Robotics and Automation. Conf. on Robotics and
Automation, pp. 3111-3116, 1996.

45. Papadopoulos, E. and Rey, D., “The Force-Angle Measure of Tipover

Stability Margin for Mobile Manipulators,” Vehicle System Dynamics,
vol. 33, no 1, pp. 29-48, 2000.

46. Garcia, E. and González de Santos, P. “An improved energy stability

margin for walking machines subject to dynamic effects”, Robotica, vol
00, pp. 1-8, April, 2004.

47. Garcia, E. and Gonzalez de Santos, P. “A New Dynamic Energy Stability

Margin for Walking Machines”, International Conference on Advanced
Robotics ICAR’03, Coimbra, Portugal, 30 June-3 July, 2003.

189

48. Ghasempoor A. and Sepehri N., “A Measure of Machine Stability for
Moving Base Manipulators”, IEEE International Conference on Robotics
and Automation, Nagoya, Japan, pp. 2249-2254, 1995.

49. Luh, J. Y. S., Walker, M. W., Paul, R. P. C., “On-line computational

scheme for mechanical manipulators”, ASME Journal of Dynamic
Systems, Measurement, and control, vol. 102, pp. 69-76, June 1980.

50. Paul, R., "Modeling, trajectory calculation and servoing of a computer

controlled arm,” AIM-177, Stanford University, Artificial Intelligence
Laboratory, 1972.

51. Luh, J., Walker, M., and Paul, R., “Resolved-Acceleration Control of

Mechanical Manipulators,” IEEE Trans. Automation. Control, AC-25,
no. 3, pp.468–474. 1980.

52. Hemami, H., Jaswa, V. C., and McGhee, R. B., “Some Alternative

Formulations of Manipulator Dynamics for Computer Simulation
Studies,” Proc of 13th Allerton Conference on Circuit and System
Theory, University of Illinois, October, 1975.

53. Beer, P., Johnston, R., “Vector Mechanics for Engineers: Statics and

Dynamics”, McGraw-Hill Companies, Sixth Editions, pp. 155, 1996.

54. Uicker “On the dynamic analysis of spatial linkages using 4x4 matrices”,

Ph.D Dissertation, Northwestern University, 1965.

55. Stepanenko, Y., and Vukobratovic, M., “Dynamics of Articulated Open

Chain Active Mechanisms”, Mathematical Biosciences, vol.28, pp.137-
170, 1976.

56. Armstrong. W., “Recursive solution to the equations of motions of an n-

link manipulator”, in Proc. 5th World Congress on Theory of Machines
and Mechanisms, Montreal, pp. 1343-1346, July 1979.

57. Kahn, M.E., “The Near Minimum Time Control of Open Loop

Articulated Kinematic Chains”, Stanford AI Lab, AI Memo 106, 1969.

190

58. Hollerbach, J., “A recursive Lagrangian formulation of manipulator
dynamics and a comparative study of dynamics formulation complexity,”
IEEE Trans. Syst. Man Cybern., vol. SMC-10, pp. 730–736, Nov. 1980.

59. Silver, W.M., “On the equivalence of Lagrangian and Newton-Euler

dynamics for manipulators,”, Int. J. Robotics Research. vol. 1, no. 2, pp.
118-128, 1982.

60. Ploen, S.R., “Geometric Algorithms for the Dynamics and Control of

Multibody Systems”, PhD Dissertation, University of California IRVINE.
pp. 34-36, 1997.

61. Walker, M. W., and Orin, D. E., “Efficient dynamic computer simulation

of robotic mechanisms”, ASME Journal of Dynamic Systems,
Measurement and Control, vol. 104, pp. 205–211, 1982.

62. Corke, P.I., “A Robotics Toolbox for MATLAB”, IEEE Robotics and

Automation Magazine, 3(1):24-32, March 1996.

63. http://en.wikibooks.org/wiki/Trigonometry:Solving_Trigonometric_Equa

tions, May, 2005.

64. Denavit, J. and Hartenberg, R. S., “A kinematic notation for lower-pair

mechanisms based on matrices”, ASME Journal of Applied Mechanics,
vol 77, pp. 215-221, June 1955.

65. Shibly, H., “Performance Evaluation and Efficient Control of Trajectory

Following Robots with Friction and Backslash”, Ph.D. Thesis, Carnegie-
Mellon University, Pittsburgh, USA, 1988.

66. Richard P. Paul., “Robot manipulators: Mathematics, programming, and

control”, the MIT Press, Cambridge, Massachusetts and London,
England, the Massachusetts Institute of Technology, 1981.

67. Alonzo Kelly., “Essential Kinematics for Autonomous Vehicles”,

Carnegie Mellon University, The Robotics institute, CMU-RI-TR-94-14,
May 1994. available at

191

http://www.frc.ri.cmu.edu/~alonzo/pubs/reports/pdf_files/kinematics.pdf

192

Appendices

Appendix A: Denavit-Hartenburg Convention

In 1955, Denavit and Hartenburg [64,62] constructed a novel technique

for setting up orthonormal coordinate frames to a pair of adjacent links in an

open kinematics chain. DH describes the kinematics of the robot by describing

the position and orientation of each link with respect to the previous link. In a

simple manner, each pair of successive joints is characterized by a distance

between joint axes a, a twist between joint axes α , an offset d, and a joint angle

θ .

Each joint axis [65] should be firstly labeled in each manipulator with a

coordinate frame number. Starting from O0 as the base frame to On as the end-

effector. The next step is to set up the three dimensional coordinate system.

The zi axis represents the motion of link i+1, so that it is assigned along the

axis of rotation for revolute joint or in the direction of translation for prismatic

joint. For parallel joint axis, zixzi-1=0, the xi-1 axis is directed from frame Oi to

Oi-1, and for intersecting joint axes, the xi-1 is directed to be perpendicular to

193

the plane or parallel to the vector cross product zi-1×zi. The y-axis is defined in

the direction needed to complete a right-handed orthonormal coordinate

frame. The system (x0, y0, z0) is assigned at link 0, the platform. For the end-

effector, instead of attaching coordinate system (x4, y4, z4) to link 4, the system

(n, o, a) is defined with x4 replaced by the unit normal vector n, y4 by the unit

orientation vector o, and z4 by the unit approach vector a. the system (n, o, a)

specifies the orientation of the wheel. The DH parameters, iθ , di, ai, and α i,

are defined for each joint pair according to the criteria as given bellow.

Table A.1. DH explanation.

DH parameters Notations Description

Joint angle iθ rotating angle between the xi-1 and xi axes about
zi-1 axis.

Link offset di translating distance from xi-1 and xi along zi-1.

Link length ai translating distance from zi-1 and zi along the xi.

Twisted angle
iα rotating angle between zi-1 and zi axis about xi

axis.

194

Figure A.1. Two adjacent links [65].

So the homogeneous transformation matrix 1i
iA − that represents the

position and orientation of the coordinate system i relative to i-1 is:

1i
iA − = Rot(zi-1, iθ) . Tran(0, 0, di) . Tran(ai, 0, 0) . Rot(xi, iα)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=−

1000
0cosαsinα0
0sinαcosα0
0001

1000
d100
0010
a001

1000
0100
00θcosθsin
00θsinθcos

A
ii

ii

i

i

ii

ii

1i
i

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⋅−
⋅−

=

1000
dcosαsinα0
sinθasinαcosθcosαcosθsinθ
cosθasinαsinθcosαsinθcosθ

iii

iiiiiii

iiiiiii

 (A.1)

xi

iα

yi
xi

zi-1

di
yi-1

ai

xi-1

iθ

zizi-1

195

In a robot manipulator, there are two types of joints; revolute and

prismatic. For revolute joint, iθ varies by allowing for rotation between two

links about an axis and is called the joint angle where the link offset di is

constant; and for a prismatic joint, the link offset di varies by allowing for

translation (sliding) motion along an axis and is called the joint displacement

where the joint angle iθ is constant and the link length also ai = 0. The

generalized coordinates, qi, represent the formulations of these two types as

follows:

⎩
⎨
⎧

=
jointprismaticaford

jointrevoluteaforθ
q

i

i
i (A.2)

Figure A.2. Types of joints

Rotation Translation

i-1 i i

196

Appendix B: Inverse kinematics

Until now, we know the target in which the manipulator reached by

solving the forward kinematic equations for the Rover, and we have completed

the system transform graph and also defined the homogeneous transformation

between frames of the platform universal, ground universal, and contact point.

However, we are now concerned to know the joints angles in order to make the

required joints’ moves 1θ , 2θ , 3θ and 4θ in term of the given numerical values

of the orientation and position.

Equating the generalized matrix 0
4B to the forward kinematics 0

4A , we

obtain matrix equation:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

++−

+−+−−−−
+++−++−

1000
d)C3aC(aSCSSCS

)3S3aS(aC)CaC(aCSSSCCSCSSCCCS
)SaS(aS)CaC(aCCSCCSSCCSSCCC

1334422342342

344133344212134134213413421

33344133344212134134213413421

zzzz

yyyy

xxxx

0
4

0
4

1000
paon
paon
paon

AB

(B.1)

Where, the matrix equality implies 12 element-by-element equality

forming 12 non-trivial equations

nx= –C1C2C34 + S1S34 (B.2)

197

ny= –S1C2C34–C1S34 (B.3)
nz= S2C34 (B.4)

ox= C1C2S34+S1C34 (B.5)
oy= S1C2S34–C1C34 (B.6)
oz= –S2S34 (B.7)

ax= C1S2 (B.8)
ay= S1S2 (B.9)
az= C2 (B.10)

px= –C1C2(a4C34+a3C3)+S1(a4S34+a3S3) (B.11)
py= –S1C2(a4C34+a3C3)–C1(a4S34+a3S3) (B.12)
pz= S2(a4C34+a3C3)+d1 (B.13)

The solutions for 1θ , 2θ , 3θ and 4θ through using the arc cosine or sine

function are inaccurate, since the sign of angle will not be taken into

consideration and the division by isinθ will make it undefined whenever iθ is

close to 0 or ±180 [66]. Therefore, the arc tangent function will mostly be

taken into our computation providing two arguments, {x, y}, within the

interval of –π ≤ iθ < π in order to check the sign of y and x and examine when

either x or y is zero. x represent the adjacent side, and y represent the opposite

side. This procedure will provide the correct and accurate results.

However, one of the most difficult forms of trigonometric equations is

presented here that solved by squaring and adding [67]. Moreover, the arc

198

cosine function will, in this case, be taken into computation providing two

arguments, {x, y}, within the interval of –π ≤ iθ < π

Figure B.1. The atan2(y, x) function

The angle variables are evaluated in a sequential manner; each variable is

isolated by pre-multiplying the matrix equation successively by the inverse

transforms starting at base frame () 10
1A

− and working forward

0 0
4 4B A= (B.14)

() 10 0 1
1 4 4A B A

−
= (B.15)

() ()1 11 0 0 2
2 1 4 4A A B A

− −
= (B.16)

() () ()1 1 12 1 0 0 3
3 2 1 4 4A A A B A

− − −
= (B.17)

The matrices elements on the left hand sides of the above matrix

equations are functions of the (i-1)th joint variables and the numerical values

iθ

x y
+ +

x y
− +

x y
− −

x y
+ −

x

y

199

transform 0
4B . The matrix elements on the right hand sides are products of A

matrices, and these are either zero, constant, or functions of the 1th to 4th joint

variables. The products of A matrices, defined on the right hand side, are

evaluated starting at link four 3
4A and working back towards the base frame as

follows:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

1000
0100
Sa0CS
Ca0SC

4444

4444

3
4A (B.18)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−−−

−−−

=

1000
0100

SaSa0CS
C3aCa0SC

333443434

33443434

2
4A (B.19)

2 34 2 34 2 2 4 34 3 3

2 34 2 34 2 2 4 34 3 31
4

34 34 4 34 3 3

C C C S S C (a C a C)
S C S S C S (a C a C)

A
S C 0 a S a S
0 0 0 1

− − +⎡ ⎤
⎢ ⎥− − − +⎢ ⎥=
⎢ ⎥− − − −
⎢ ⎥
⎣ ⎦

 (B.20)

1. Differential joint angle; 1θ :

If we pre-multiply equation B.14 by () 10
1A − , we obtain equation B.15

200

() 1
4

0
4

10
1 ABA =

−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−−−
+−−−
+−−

=

1000
SaSa0CS

)CaC(aSCSSCS
)CaC(aCSSCCC

1000
0CS

d0
0SC

333443434

3334422342342

3334422342342

zzz

yyyy

xx

11

1

11

1000
paon
paon
paon

0
10

0

z

xx

 (B.21)

The left hand side of above equation is a function of the given numerical

values of generalized transform 0
4B pre-multiplied by a function of 1θ inside

the inverse transform of 0
1A . The right hand side is a function of 2θ , 3θ , and

4θ . After rearranging the above equation, we obtain

1 x 1 y 1 x 1 y 1 x 1 y 1 x 1 y

z z z 1

1 x 1 y 1 x 1 y 1 x 1 y 1 x 1 y

C n S n C o S o C a S a C p S p

n o a p dz
S n C n S o C o S a C a S p C p

0 0 0 1

+ + + +⎡ ⎤
⎢ ⎥

− − − − +⎢ ⎥ =⎢ ⎥− + − + − + − +⎢ ⎥
⎢ ⎥⎣ ⎦

2 34 2 34 2 2 4 34 3 3

2 34 2 34 2 2 4 34 3 3

34 34 4 34 3 3

C C C S S C (a C a C)
S C S S C S (a C a C)

S C 0 a S a S
0 0 0 1

− − +⎡ ⎤
⎢ ⎥− − − +⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥
⎣ ⎦

 (B.22)

The third row, third column element on the right hand side of equation

(B.22) is zero. Equating this to the element on the left hand at the same

location we obtain

201

1 1 yS Ca a 0x− + = (B.23)

This form denotes for a point symmetric redundancy, because it

generates two solutions that are symmetric about the origin as shown in Figure

B.2.

Figure B.2. Point symmetric redundancy

The first solution can obtained by Adding xa1S to both sides and dividing by

xa1C , we get

y1
1

1 x

asinθ
tanθ

cosθ a
= = (B.24)

y1
1

x

a
θ tg

a
−
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= (B.25)

The angle 1θ is obtained from the computer in term of atan2 function as

()xy1 a,a2atanθ = (B.26)

202

the second solution for 1θ can be obtained by adding to both sides y1aC− , and

dividing by xa1C , and canceling xa− on the left hand side and C1 on the right

side hand.

()1 y xθ atan 2 a , a= − − (B.27)

After determining the value of 1θ , all elements inside the left hand side are

totally known. We check the right hand side for other functions of single

variables, 1θ can be found.

2. Conjunctional joint angle; 2θ :

Examining the right hand side for further unknown individual joint

coordinate, we can equate the 1,4 and 2,4 elements from left and right hand

sides of equation B.22.

1 x 1 y 2 4 34 3 3C p S p C (a C a C)+ = − + (B.28)

 z 1 2 4 34 3 3Sp d (a C a C)− + = − + (B.29)

then,

() ()()2 z 1 1 x 1 yθ atan 2 p d , C p S p= − − + − + (B.30)

203

The angle 2θ here is always unique and there is no degeneracy as in the case of

the previous angle 1θ .

We check the right hand side for further functions of single variables.

Finding none, we need for new pre-multiplication technique for obtaining new

information.

3. Wheel frame; 4θ :

As mentioned before, the wheel is equipped for locomotive and

manipulative mechanism, meanwhile the inverse kinematics deals only with

manipulations apart from wheel rotation. If we pre-multiply equation B.15 by

() 11
2A − we obtain

() () 2
4

0
4

10
1

11
2 ABAA =⋅⋅ −−

x x x x1 2 1 2 2 2 1 34 34 4 34 3 3

34y y y y1 1 34 4 34 3 3

1 2 1 2 2 2 1 z z z z

C C S C S S d C S 0 a C a C
S C 0 0 S C 0 a S a S

C S S S C C d 0 0 1 0
0 0 0 1 0 0 0 1

n o a p
n o a p
n o a p
0 0 0 1

⎡ ⎤− − − −⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥− − − − −⎢ ⎥⎢ ⎥ ⎢ ⎥⋅ =⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

1 2 1 2 y 2 z 1 2 1 2 y 2 z 1 2 1 2 y 2 z 1 2 1 2 y 2 z 2 1

1 1 y 1 1 y 1 1 y 1 1 y

1 2 1 2 y 2 z 1 2 1 2 y 2 z 1 2 1 2 y 2 z 1 2 1 2 y 2 z 2 1

C C S C S C C S C S C C S C S C C S C S S d
S C S C S C S C

C S S S C C S S S C C S S S C C S S S C C d
0 0 0 1

n n n o o o a a a p p p
n n o o a a p p

n n n o o o a a a p p p

x x x x

x x x x

x x x x

− − − −⎡
− − − −

⎣

+ + + + +
+ + + +

+ + + + + + + + −

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦

204

34 34 4 34 3 3

34 34 4 34 3 3

C S 0 a C a C
S C 0 a S a S
0 0 1 0
0 0 0 1

− − −⎡ ⎤
⎢ ⎥− − − −⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (B.31)

Examining the right hand side, we can equate the 1,4 and 2,4 elements from

left and right hand sides

1 2 x 1 2 y 2 z 2 1 4 34 3 3C C p S C p S p C a CS d a− = −+ + − (B.32)

 1 x 1 y 4 34 3 3S p C p a Sa S− = −+ − (B.33)

The angle 4θ can be solved by squaring and adding techniques. Let,

1 4 34 3 3K C a Ca= −− (B.34)

2 4 34 3 3K a Sa S= −− (B.35)

These can be squared and added to give us one trigonometric equation as

() () () () ()2 2 2 2
1 2 4 3 3 4 3 34 3 34K K a a 2a a C C S S+ = + + +

 () ()2 2
4 3 3 4 4a a 2a a C= + + (B.36)

205

The result implies that there are two solutions for angle 4θ which are

symmetric about zero; (+) sign assigns for RF leg and LR leg; and (-) sign

assigns for RR leg and LF leg.

() () () ()()()2 2 2 2
4 1 2 4 3 3 4θ acos K K a a / 2a a= ± + − + (B.37)

Substituting K1 and K2, we get

() () () ()()()2 2 2 2
4 1 2 x 1 2 y 2 z 2 1 1 x 1 y 4 3 3 4θ acos C C p S C p S p S d S p C p a a / 2a a= ± + − + + − + − +

 (B.38)

4. Disjunctional joint angle; 3θ :

The angle 3θ can be solved by a recursion technique in inverse kinematics

problem; rearranging the equations B.34 and B.35, respectively, in the forms

() ()1 3 4 4 3 3 4 4K C a C a S a S= + +− (B.39)

() ()2 3 4 4 3 3 4 4K a C a C a SS= + −− (B.40)

And then equating K3 and K4 respectively to

3 4 4 3K a C a= + (B.41)

4 4 4K a S= (B.42)

We obtain,

206

1 3 3 3 4K C K S K= +− (B.43)

2 3 3 3 4K K C KS= −− (B.44)

Applying mutual multiplications of equations B.43 and B.44, we obtain

3 1 3 3 1 4 3 2 3 3 2 4S K K C K K C K K S K K− − = − + (B.45)

Rearranging the above equation to

() ()3 1 3 2 4 3 1 4 2 3S K K K K C K K K K− − = − (B.46)

Finally,

()3 1 4 2 3 1 3 2 4θ atan 2 K K K K , K K K K= − − − (B.47)

Substituting K1, K2, K3, and K4 we obtain

()() ()()(
()() ()())44y1x134412z2y21x21

344y1x14412z2y21x213

SapCpSaCadSpSpCSpCC

,aCapCpSSadSpSpCSpCC2atanθ

+

+

−−++−+−

+−−+−+=
 (B.48)

207

Appendix C: Kinematic and dynamic parameters

Rotational matrix

Rotation matrix transformation from universal frame to base frame is given by

U
0

c c c s c s s c s s s c
R s cos cos c s

s c s s c c s s sin s c c

φ θ φ θ ψ φ ψ φ θ ψ φ ψ
θ θ ψ θ ψ
φ θ φ θ ψ φ ψ φ θ ψ φ ψ

− + +⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− + − +⎣ ⎦

 (C.1)

Rotation matrices of joints are given by

1 1
0
1 1 1

C 0 S
R = S 0 C

0 1 0

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (C.2)

2 2
1
2 2 2

C 0 S
R S 0 C

0 1 0
−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (C.3)

3 3
2
3 3 3

C S 0
R S C 0

0 0 1

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

 (C.4)

4 4
3
4 4 4

C S 0
R = S C 0

0 0 1

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (C.5)

208

Position vectors

The position vector from the origin of frame i to i+1 with respect to frame i+1

is:

[]Ti 1 i 1 i
i 1 i i 1 i 1 i 1 i 1 i 1 i 1r R r a d sinα d cosα+ +
+ + + + + + += = (C.6)

Applying on the above relation starting from base to end-effector, we obtain

[]T0
0 000r = (C.7)

[]T1
1
1 0d0r −= (C.8)

[]T2
2 000r = (C.9)

[]T3
3
3 00ar = (C.10)

[]T4
4
4 00ar = (C.11)

Position vector of center of mass of link i with respect to frame Oi is

[]T1
1
c,1 0d0.50r = (C.12)

[]T2
c,2 000r = (C.13)

[]T3
3
c,3 00a0.5r −= (C.14)

[]T4
4
c,4 00ar −= (C.15)

209

Masses

The mass of the robot creates weight and inertia; weight is a force that

points down vertically in the universal coordinate system. Inertia on the other

hand creates resistance to acceleration caused by force. The distribution of

masses among the four legs and platform plays a major role in Specifying the

location of center of mass for the robot in the case of the rotations in legs.

Rover’s Center of mass

Each part of the rover is considered as a rigid body, while the rover mass

is represented in single concentrated point, called Center of Mass. In other

meaning, the weight of the entire robot mass is focused only at the center of

mass.

() ()()

4
U

i i
U i=0
cm 4

i
i=0

U U U U U U U
c,0R 0 c,1R 1 c,1L 1 c,2R 2 c,2L 2 c,3RF 3 c,3RR 3

U U U U U U
c,3LF 3 c,3LR 3 c,4RF 4 c,4RR 4 c,4LF 4 c,4LR 4

0 1 2 3 4

r m
r =

m

r m + r m + r m + r m + r m + r m + r m +

r m + r m + r m + r m + r m + r m
m + 2 m + m + 4 m + m

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑
 (C.16)

where,

210

U
ir position vector of frame Oi with respect to universal frame OU

mi mass of the link i starting from platform link and ending at end-effector

link.

Inertia

Inertia creates a resistance against the change in velocity or acceleration

caused by external force. On other words, it is the propensity of the link at rest

to stay at rest and propensity of the link in motion to stay in motion. Therefore,

the link with high inertia will be in need for a sufficient amount of torque to

accelerate or decelerate the object itself. Inertia is considered as mass in the

case of linear motion and as moment of inertia in the case of rotational motion.

The mass moment of inertia is directly proportional to the mass distribution

and the shape of the link.

Inertia matrix for each rigid link is an identical matrix, and it includes

moments of inertia and products of inertia conforming six unique elements.

The moments of inertia are three diagonal elements, i.e. Ixx, Iyy, Izz. The

products of inertia are off-diagonal elements, i.e. Ixy, Ixz, Iyz.

211

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

zzyzxz

yzyyxy

xzxyxx

III
III
III

I (C.17)

The symmetry of link is used to recognize the principal axes. The off-

diagonal elements are equal zero due to symmetry. The principal mass

moments of inertia can be found without solving the corresponding eigenvalue

problem. The moments of inertia can be transformed between coordinate

systems.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z

y

x

I00
0I0
00I

I (C.18)

The SI unit for mass moment of inertia is kg m2

For each leg, the links used are one rectangular prism, two slender rods,

and one thin disk as shown in Figure C.1

212

Figure C.1. Rover’s DH and dynamic parameters

y2

O0

O2 m2

y1

z1

O1

x1, x2

x3, x4

z0

O4

x0

y0

m4

O4

O3

z2

z3

m1

m3

z4

d1

a3

a4

y3

y4

213

Figure C.2. Link’s DH and Dynamic parameters.

Link 0 is a rectangular prism, and its inertia matrix can be obtain as

O1

(b) Link 1

y1

z1

m1

O0

x1

d1

aex ain

m2O1
O2

y2

x2

z2

d2

m3

O2

O3 y3

x3

a3

a

2b

d1

m0

x0

z0y0

(a) Link 0

(c) Link 2 (d) Link 3

(e) Link 4

214

2 2
1

2 20
0 1

2 2

a + d 0 0
mI 0 b + d 03

0 0 a + b

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (B.19)

Link 1 is a slender rod, and its inertia matrix can be obtain as

()2
1 1

1

1 0 0
m d

I 0 0 012
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

 (C.20)

Inertia matrix for link 2

2

0 0 0

I 0 0 0

0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

 (C.21)

Link 3 is a slender rod, and its inertia matrix can be obtain as

()2
3 3

3

0 0 0
m a

I 0 1 012
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

 (C.22)

Link 4 is a thin disk, and its inertia matrix can be obtain as

4 4 ex 4 in

2 2
4ex 4ex 4in 4in

I (I) (I)
1 0 04

1= (m a - m a) 0 04
10 0 2

= −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (C.23)

215

Now, the table of dynamic parameters can be filled up as follows

Table C.1. Dynamic parameters table.

Link m rx ry rz Ix Iy Iz

0 m0 0 0 0 ()2 2
0 1m a + d

3
()2 2

0 1m b + d
3

()2 2
0m a + b

3

1 m1 0 1d
2

 0 ()2
1 1m d
12 0 ()2

1 1m d
12

2 m2 0 0 0 0 0 0

3 m3 3a-
2

0 0 0 ()2
3 3m a
12 ()2

3 3m a
12

4 m4 -a4 0 0
2 2

4ex 4ex 4in 4inm a - m a
4

2 2
4ex 4ex 4in 4inm a - m a

4

2 2
4ex 4ex 4in 4inm a - m a

2

216

Appendix D: Newton-Euler Recursive Formulation

The dynamic equations of the links are expressed here using the

relationships of moving coordinate systems. The numerical algorithm for

Newton-Euler Recursive method can be broken into two forward and

backward recursions.

− The forward recursion

For rotational link i+1

i
i 1 i i 1ω z q+ += & (D.1)
i
i 1 i i 1ω z q+ +=& && (D.2)
0 0
i 1 i i i 1ω ω z q+ += + & (D.3)
0 0 0
i 1 i i i 1 i i i 1ω ω z q ω (z q)+ + += + + ×& & && & (D.4)
0 0 i 0
i 1 i 1 i 1 iv ω r v+ + += × + (D.5)

()o 0 i 0 0 i 0
i 1 i 1 i 1 i 1 i 1 i 1 ia ω r ω ω r v+ + + + + += × + × × +& (D.6)

The velocity and acceleration of center of mass of link i are computed

respectively as follows:

0 0 0 0
c,i i c,i iv ω r v= × + (D.7)

()0 0 i 0 0 0 0
c,i i c,i i i c,i ia ω r ω ω r v= × + × × +& & (D.8)

Once the velocities and accelerations of the center of mass of links are

computed, the inertia forces and moments can be computed for each mass link.

217

Assuming the viscous damping friction is negligible, the total external

force is given by the Newton’s second law, and whilst the moment is given by

Euler’s equation. Newton-Euler’s methods first described with regard to the

fixed base coordinate system [55]

0 0
i i c,if m v= & (D.9)

()0 0 0 0
i i i i i iτ I ω ω I ω= + ×& (D.10)

− The backward recursion

This approach transforms the generalized forces back from the end-

effector On+1 to the base frame O0. The total force and moment exerted on

center of mass of link i are equal the forces and moments, respectively,

exerted on link i by link i-1 and i+1:

0 0 0
i i i 1f F F+= − (D.11)
0 0 0 i 0 i 0 0
i i i 1 i 1 i 1 i 1 c,i iτ T T r F (r r) f+ − + −= − − × − + × (D.12)

Arranging the above equations in recursive form, we obtain

0 0 0
i i 1 iF F f+= + (D.13)
0 0 i 0 i 0 0 0
i i 1 i 1 i 1 i 1 c,i i iT T r F (r r) f τ+ − + −= + × + + × + (D.14)

218

Computational approach

Multiply i+1
0R with 1i

1iω
+
+ [65], we obtain

0 0 i 1
i 1 i 1 i 1ω R ω +
+ + += (D.15)

Multiplying the above equation by i 1
0R + , we obtain

i 1 i 1 0
i 1 0 i 1ω R ω+ +
+ += (D.16)

The lower sub script indicates for the reference coordinate frame. In

such a way, 1i
1iω
+
+ should be read as an angular velocity vector from frame Oi to

frame Oi+1 expressed in its own coordinate frame Oi+1.

The rotation matrix of homogeneous transformation of frame Oi+1 with

respect Oi is

i 1 i 1 i 1 i 1 i 1
i
i 1 i 1 i 1 i 1 i 1 i 1

i 1 i 1

cosθ sinθ cosα sinθ sinα
R sinθ cosθ cosα cosθ sinα

0 sinα cosα

+ + + + +

+ + + + + +

+ +

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 (D.17)

The rotation matrix of homogeneous transformation of frame Oi with

respect Oi+! is equal to the transpose or inverse of i
i 1R +

() ()-1 Ti 1 i i
i i 1 i 1R R = R+

+ += (D.18)

219

The position vector from frame Oi to frame Oi+1 expressed in frame Oi+1 is:

i 1 i 1 i
i 1 i i 1

i 1 i 1 i 1 i 1

i 1 i 1 i 1 i 1 i 1 i 1 i 1

i 1 i 1 i 1 i 1 i 1 i 1

r R r

cosθ sinθ 0 a cosθ
sinθ cosα cosθ cosα sinα a sinθ

sinθ sinα cosθ sinα cosα d

+ +
+ +

+ + + +

+ + + + + + +

+ + + + + +

=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

i 1

i 1 i 1

i 1 i 1

a
d sinα
d cosα

+

+ +

+ +

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (D.19)

Rewriting the recursive relations to be expressed to local reference

frame, we get:

− Forward recursion: 0 ≤ i ≤ n-1

For rotational joint axis i+1:

i 1 i 1 i
i 1 i i i 1ω R ω q+ + ⎛ ⎞

⎜ ⎟+ +⎝ ⎠
= + & (D.20)

()i ii 1 i 1
i 1 i i i 1 i i 1ω R ω q ω q+ +
+ + += + + ×& & && & (D.21)

i 1 i 1 i 1 i 1 i
i 1 i 1 i 1 i iv ω r R v+ + + +
+ + += × + (D.22)

()i 1 i 1i 1 i 1 i 1 i 1 i 1 i
i 1 i 1 i 1 i 1 i ii 1 i 1v ω r ω ω r R v+ ++ + + + +
+ + + + + += × + × × +&& & (D.23)

i 1 i 1 i 1 i 1
c,i 1 i 1 c,i 1 i 1v ω r v+ + + +

+ + + += × + (D.24)

()i 1 i 1 i 1 i 1 i 1 i 1 i 1
c,i 1 i 1 c,i 1 i 1 i 1 c,i 1 i 1v ω r ω ω r v+ + + + + + +

+ + + + + + += × + × × +&& & (D.25)

i 1 i 1
i 1 i 1 c,i 1f m v+ +
+ + += & (D.26)

()i+1 i 1i 1 i+1 i 1 i 1
i 1 c,i+1 i 1 i 1 c,i+1 i 1τ I ω ω I ω ++ + +
+ + + +
= + ×& (D.27)

220

− Backward recursion: n ≤ i ≤0

After computing the inertial forces and moments for each link, backward

computational procedures can be followed by evaluating one a link at a time

starting from the end-effector frame and ending at the base frame:

i i i 1 i
i i 1 i 1 iF R F f+

+ += + (D.28)

()() ()i i i 1 i+1 i i 1 i i i i
i i 1 i 1 i i i 1 i c,i i iT R T R r F r r f τ+ +

+ + += + × + + × + (D.29)

221

Appendix E: Free-Body Diagram for four manipulators

Figure E.1. Transform graphs for four legged manipulators starting from universal to
end-effectors.

Where, Li: Linki.

O4LR

O4LF

O3LR
O3LF

O3RR
O3RF

O0R O1R O2R O1LO2L

O0L

O4RR

O4RF
L1R L2R

OU

L3RF

L3R

L4RF

L4RR

L1LL2L L3LF

L4LF

L4LR
L3LR

O2L

OU

O4LRO4LF

O3LF

O0L

O1L

O3LR

O2R

O4RF

O0R

O1R

O4RR

O3RF O3RR

R0
R1A

RF3
RF4A RR3

RR4A

L0
L1A

LF3
LF4A LR3

LR4A

1L
2LA 1R

2RA

2L
3LFA 2L

3LRA 2R
3RFA 2R

3RRA

222

Link 4RF, 4RR, 4LF, and 4LR

Figure E.2. Forces and moments exerted on link 4RF, 4RR, 4LF, and 4LR.

4RF 4RF SRF 4RF
4RF SRF SRF 4RFF = R F + f (E.1)
4RR 4RR SRR 4RR
4RR SRR SRR 4RRF = R F + f (E.2)

()() ()4RF 4RF SRF SRF 4RF SRF 4RF 4RF 4RF 4RF

4RF SRF SRF 4RF 4RF SRF 4RF c,4RF 4RF 4RFT = R T + R r × F + r + r ×f + τ (E.3)

()() ()4RR 4RR SRR SRR 4RR SRR 4RR 4RR 4RR 4RR
4RR SRR SRR 4RR 4RR SRR 4RR c,4RR 4RR 4RRT = R T + R r × F + r + r ×f + τ (E.4)

And,
4LF 4LF SLF 4LF
4LF SLF SLF 4LFF = R F + f (E.5)
4LR 4LR SLR 4LR
4LR SLR SLR 4LRF = R F + f (E.6)

m4
O3LF

O4LF SLF
SLF

SLF
SLF

F
T

4LF
4LF

4LF
4LF

F
T

Link 4LF

4LF
4LF

4LF
4LF

f
τ

4LR
4LR

4LR
4LR

f
τ

m4
O3LR

O4LR
SLR
SLR

SLR
SLR

F
T

4LR
4LR

4LR
4LR

F
T

Link 4LR

m4
O3RF

O4RF SRF
SRF

SRF
SRF

F
T

4RF
4RF

4RF
4RF

F
T

Link 4RF

4RF
4RF

4RF
4RF

f
τ

4RR
4RR

4RR
4RR

f
τ

m4
O3RR

O4RR
SRR
SRR

SRR
SRR

F
T

4RR
4RR

4RR
4RR

F
T

Link 4RR

223

()() ()4LF 4LF SLF SLF 4LF SLF 4LF 4LF 4LF 4LF
4LF SLF SLF 4LF 4LF SLF 4LF c,4LF 4LF 4LFT = R T + R r × F + r + r ×f + τ (E.7)

()() ()4LR 4LR SLR SLR 4LR SLR 4LR 4LR 4LR 4LR
4LR SLR SLR 4LR 4LR SLR 4LR c,4LR 4LR 4LRT = R T + R r × F + r + r ×f + τ (E.8)

Link 3RF, 3RR, 3LF, and 3LR

Figure E.3. Forces and moments exerted on link 3RF, 3RR, 3LF, and 3LR.

3RF 3RF 4RF 3RF
3RF 4RF 4RF 3RFF = R F + f (E.9)
3RR 3RR 4RR 3RR
3RR 4RR 4RR 3RRF R F + f= (E.10)

()() ()3RF 3RF 4RF 4RF 3RF 4RF 3RF 3RF 3RF 3RF
3RF 4RF 4RF 3RF 3RF 4RF 3RF c,3RF 3RF 3RFT = R T + R r × F + r + r ×f + τ (E.11)

()() ()3RR 3RR 4RR 4RR 3RR 4RR 3RR 3RR 3RR 3RR
3RR 4RR 4RR 3RR 3RR 4RR 3RR c,3RR 3RR 3RRT = R T + R r × F + r + r ×f + τ (E.12)

and,

3LF 3LF 4LF 3LF
3LF 4LF 4LF 3LFF = R F + f (E.13)

O3RR

O3RF

O3LR

m3
m3

O2L

Link 3LR

Link 3LF

O3LF

4LR
4LR

4LR
4LR

F
T4LF

4LF

4LF
4LF

F
T

3LR
3LR

3LR
3LR

F
T

3LF
3LF

3LF
3LF

F
T

3LR
3LR

3LR
3LR

f
τ

3LF
3LF

3LF
3LF

f
τ

m3
m3

O2R

Link 3RR

Link 3RF

4RR
4RR

4RR
4RR

F
T4RF

4RF

4RF
4RF

F
T

3RR
3RR

3RR
3RR

F
T

3RF
3RF

3RF
3RF

F
T

3RR
3RR

3RR
3RR

f
τ

3RF
3RF

3RF
3RF

f
τ

224

3LR 3LR 4LR 3LR
3LR 4LR 4LR 3LRF = R F + f (E.14)

()() ()3LF 3LF 4LF 4LF 3LF 4LF 3LF 3LF 3LF 3LF
3LF 4LF 4LF 3LF 3LF 4LF 3LF c,3LF 3LF 3LFT = R T + R r × F + r + r ×f + τ (E.15)

()() ()3LR 3LR 4LR 4LR 3LR 4LR 3LR 3LR 3LR 3LR
3LR 4LR 4LR 3LR 3LR 4LR 3LR c,3LR 3LR 3LRT = R T + R r ×F + r + r ×f + τ (E.16)

link 2R and link 2L

Figure E.4. Forces and moments exerted on link 2R, 2L.

2R 2R 3RF 2R 3RR 2R
2R 3RF 3RF 3RR 3RR 2RF = R F + R F + f (E.17)

()() ()()
()

2R 2R 3RF 3RF 2R 3RF 2R 3RR 3RR 2R 3RR
2R 3RF 3RF 2R 2R 3RF 3RR 3RR 2R 2R 3RR

2R 2R 2R 2R
2R c,2R 2R 2R

T = R T + R r ×F + R T + R r ×F +

r + r ×f + τ
 (E.18)

and,

2L 2L 3LF 2L 3LR 2L
2L 3LF 3LF 3LR 3LR 2LF = R F + R F + f (E.19)

()() ()()
()

2L 2R 3LF 3LF 2L 3LF 2L 3LR 3LR 2L 3LR
2L 3LF 3LF 2L 2L 3LF 3LR 3LR 2L 2L 3LR

2L 2L 2L 2L
2L c,2L 2L 2L

T = R T + R r ×F + R T + R r ×F +

r + r ×f + τ
 (E.20)

m2

O1L

Link 2L

O2L

2L
2L

2L
2L

F
T

3LR
3LR

3LR
3LR

F
T3LF

3LF

3LF
3LF

F
T

2L
2L

2L
2L

f
τ

m2

O1R

Link 2R O2R

2R
2R

2R
2R

F
T

3RR
3RR

3RR
3RR

F
T

3RF
3RF

3RF
3RF

F
T

2R
2R

2R
2R

f
τ

225

link 1R, link 1L

Figure E.5. Forces and moments exerted on link 1R and link 1L.

1R 1R 2R 1R
1R 2R 2R 1RF = R F + f (E.21)

()() ()1R 1R 2R 2R 1R 2R 1R 1R 1R 1R
1R 2R 2R 1R 1R 2R 1R c,1R 1R 1RT = R T + R r × F + r + r ×f + τ (E.22)

And,

1L 1L 2L 1L
1L 2L 2L 1LF = R F + f (E.23)

()() ()1L 1L 2L 2L 1L 2L 1L 1L 1L 1L
1L 2L 2L 1L 1L 2L 1L c,1L 1L 1LT = R T + R r ×F + r + r ×f + τ (E.24)

m1

O0L

O1L

1L
1L

1L
1L

F
T

2L
2L

2L
2L

F
T

Link 1L

1L
1L

1L
1L

f
τ

m1

O0R

O1R

1R
1R

1R
1R

F
T

2R
2R

2R
2R

F
T

Link 1R

1R
1R

1R
1R

f
τ

226

Link 0

Figure E.6. Forces and moments exerted on platform.

0R 0R 1R 0R 0L 1L 0R
0R 1R 1R 0L 1L 1L 0RF = R F + R R F + f (E.25)

()() ()()
()

0R 0R 1R 1R 0R 1R 0R 0L 1L 1L 0L 1L
0R 1R 1R 0R 0R 1R 0L 1L 1L 0L 0L 1L

0R 0R 0R 0R
0R c,0R 0R 0R

T = R T + R r ×F + R R T + R r × F +

r + r ×f + τ
 (E.26)

And finally, forces and moments exerted on platform expressed in

universal frame can be given by,

U U 0R
0R 0R 0RF = R F (E.27)
U U 0R
0R 0R 0RT = R T (E.28)

O0R
0R
0R

0R
0R

F
T

1R
1R

1R
1R

F
T

Link 0

0R
0R

0R
0R

f
τ

m0

1L
1L

1L
1L

F
T

227

Appendix F: Universal forces and moments

Newton-Euler Recursive method provides a monitoring system for the

sources of dynamic forces and moments exerted on each link of the four

manipulators. The decomposition of universal forces and moments can make

the point clearer throughout studying the source of each force and moment

exerted on the universal frame.

1. The source of universal forces: The universal forces are vector

summations for:

• Forces exerted on center of link masses resulted from gravity and inertial

linear accelerations; U i
i iR f , where i represents center of masses of the

links starting from platform link and ending at the wheel links, link by

link.

• External normal forces exerted on the end-effectors; U S
S SA F , exerted on

the touching wheel with surface.

Substituting equation E.25 in equation E.27, we obtain
U U 0R
0R 0R 0RF = R F

 U 0R 1R 0R 0L 1L 0R
0R 1R 1R 0L 1L 1L 0R= R R F + R R F + f⎡ ⎤⎣ ⎦

 U 1R U 1L U 0R
1R 1R 1L 1L 0R 0R= R F + R F + R f (F.1)

228

Substituting equations E.21 and E.23 in equation F.1, we obtain
U U 1R 2R 1R U 1L 2L 1L U 0R
0R 1R 2R 2R 1R 1L 2L 2L 1L 0R 0RF = R R F + f + R R F + f + R f⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 U 2R U 2L U 1R U 1L U 0R
2R 2R 2L 2L 1R 1R 1L 1L 0R 0R= R F + R F + R f + R f + R f (F.2)

Substituting equations E.17 and E.19 in equation F.2, we obtain
U U 2R 3RF 2R 3RR 2R U 2L 3LF 2L 3LR 2L U 1R U 1L U 0R
0R 2R 3RF 3RF 3RR 3RR 2R 2L 3LF 3LF 3LR 3LR 2L 1R 1R 1L 1L 0R 0RF = R R F + R F + f + R R F + R F + f + R f + R f + R f⎡ ⎤ ⎡ ⎤

⎣ ⎦ ⎣ ⎦

 U 3RF U 3RR U 3LF U 3LR U 2R U 2L U 1R U 1L U 0R
3RF 3RF 3RR 3RR 3LF 3LF 3LR 3LR 2R 2R 2L 2L 1R 1R 1L 1L 0R 0R= R F + R F + R F + R F + R f + R f + R f + R f + R f (F.3)

Substituting equations E.9, E.10, E.13, and E.14 in equation F.3, we obtain

U U 3RF 4RF 3RF U 3RR 4RR 3RR U 3LF 4LF 3LF
0R 3RF 4RF 4RF 3RF 3RR 4RR 4RR 3RR 3LF 4LF 4LF 3LF

U 3LR 4LR 3LR U 2R U 2L U 1R U 1L U 0R
3LR 4LR 4LR 3LR 2R 2R 2L 2L 1R 1R 1L 1L 0R 0R

F = R R F + f + R R F + f + R R F + f +

R R F + f + R f + R f + R f + R f + R f

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎣ ⎦

U 4RF U 4RR U 4LF U 4LR U 3RF U 3RR U 3LF
4RF 4RF 4RR 4RR 4LF 4LF 4LR 4LR 3RF 3RF 3RR 3RR 3LF 3LF

U 3LR U 2R U 2L U 1R U 1L U 0R
3LR 3LR 2R 2R 2L 2L 1R 1R 1L 1L 0R 0R

= R F + R F + R F + R F + R f + R f + R f +

R f + R f + R f + R f + R f + R f
 (F.4)

Finally, substituting equations E.1, E.2, E.5 and E.6 in equation F.4, we obtain

U U 4RF SRF 4RF U 4RR SRR 4RR U 4LF SLF 4LF
0R 4RF SRF SRF 4RF 4RR SRR SRR 4RR 4LF SLF SLF 4LF

U 4LR SLR 4LR U 3RF U 3RR U 3LF U 3LR U 2R
4LR SLR SLR 4LR 3RF 3RF 3RR 3RR 3LF 3LF 3LR 3LR 2R 2R

U
2L

F = R R F + f + R R F + f R R F + f +

R R F + f + R f R f + R f + R f + R f +

R f

+
+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎣ ⎦

2L U 1R U 1L U 0R
2L 1R 1R 1L 1L 0R 0R+ R f + R f + R f

U SRF U SRR U SLF U SLR U 4RF U 4RR
SRF SRF SRR SRR SLF SLF SLR SLR 4RF 4RF 4RR 4RR

U 4LF U 4LR U 3RF U 3RR U 3LF U 3LR
4LF 4LF 4LR 4LR 3RF 3RF 3RR 3RR 3LF 3LF 3LR 3LR
U 2R U 2L U 1R U 1L
2R 2R 2L 2L 1R 1R 1L 1L 0R

= R F + R F + R F + R F + R f + R f +

R f + R f R f + R f + R f + R f +

R f + R f + R f + R f + R

+
U 0R

0Rf

 (F.5)

Where, equation F.5 gives the vector summation of the external normal

forces exerted on the touching wheel with surface,

229

4

U cs U SRF U SRR U SLF U SLR
cs cs SRF SRF SRR SRR SLF SLF SLR SLR

cs=1

R F = R F + R F + R F + R F∑ (F.6)

Also, it gives the vector summations of the forces exerted on center of link

masses resulted from gravity and inertial accelerations
4

U i U 4RF U 4RR U 4LF U 4LR U 3RF U 3RR U 3LF
i i 4RF 4RF 4RR 4RR 4LF 4LF 4LR 4LR 3RF 3RF 3RR 3RR 3LF 3LF

i=0
U 3LR U 2R U 2L U 1R U 1L U 0R
3LR 3LR 2R 2R 2L 2L 1R 1R 1L 1L 0R 0R

R f = R f + R f + R f + R f R f + R f + R f +

R f + R f + R f + R f + R f + R f

+∑ (F.7)

2. The source of universal moment: The moments exerted on platform are

vector summations for:

• Moment of exerted force on center of link masses resulted from gravity

and inertial linear accelerations; ()U U i
c,i i ir × R f .

• Moment exerted on center of link masses resulted from inertial angular

accelerations; U i
i iR τ .

• Moments of external normal forces exerted on the end-effectors;

()U U S
4 S Sr × R F , exerted on the touching wheel with surface.

Where, i represents link’s frame starting from platform link and ending

at the wheel links of four manipulators, link by link.

Successive substitutions inside equation E.28 starting from platform

frame and ending at end-effectors,

230

() () () ()
() () () ()
() ()

U U U SRF U U SRR U U SLF U U SLR
0R 4RF SRF SRF 4RR SRR SRR 4LF SLF SLF 4LR SLR SLR

U U 4RF U U 3RF U U 4RR U U 3RR
c,4RF 4RF 4RF c,3RF 3RF 3RF c,4RR 4RR 4RR c,3RR 3RR 3RR

U U 2R U U 1R
c,2R 2R 2R c,1R 1R 1R

T = r × R F + r × R F r R F r R F

r R f r R f r R f r R f

r R f r R f r

+ × + × +

× + × + × + × +

× + × + () () ()
() () () ()

U U 0R U U 1L U U 2L
c,0R 0R 0R c,1L 1L 1L c,2L 2L 2L

U U 3LF U U 4LF U U 3LR U U 4LR
c,3LF 3LF 3LF c,4LF 4LF 4LF c,3LR 3LR 3LR c,4LR 4LR 4LR

U 4RF U 3RF U 4RR U 3RR U 4LF
4RF 4RF 3RF 3RF 4RR 4RR 3RR 3RR 4LF 4LF

R f r R f r R f

r R f r R f r R f r R f

R τ R τ R τ R τ R τ R

× + × + × +

× + × + × + × +

+ + + + + U 3LF U 4LR U 3LR
3LF 3LF 4LR 4LR 3LR 3LR

U 2R U 1R U 2L U 1L U 0R
2R 2R 1R 1R 2L 2L 1L 1L 0R 0R

τ R τ R τ

R τ R τ R τ R τ R τ

+ + +

+ + + +

 (F.8)

231

Matlab Code

main_menu_dynamic.m

function m= main_menu_dynamic()

close all;
Locomotion_Case = 'DN'

while 1,

 clc

 which = menu('_____Dynamic Case______', ...
 ' 1. Wheels Motion on Flat Surface....................', ...
 ' 2. Wheels, RFDJ and RRDJ Motion on Flat Surface.......', ...
 ' 3. Wheels, RCJ and LCJ Motion on Flat Surface.......', ...
 ' 4. Wheels, RCJ,LCJ,RDJ,& LDJ Motion on Flat Surface ', ...
 ' 5. Wheels Motion on Step Flat Surface...............', ...
 ' 6. Wheels, RFDJ and RRDJ Motions on Step Flat Surface..', ...
 ' 7. Wheels, RDJ and LDJ Motion on Inclined Surface....,,,,', ...
 ' 8. Wheels Motion on Flat & Inclined Surface.............', ...
 ' 9. Wheels Motion on Sinusoidal Surface..................', ...
 '10. Wheels Motion on Non-uniform Surface..................', ...
 'Exit');

 if which == 1,
 close all;
 Surface_geometry = 'F'; % GG1
 Touch = [1 1 1 1]';

 Rover_1 % q= Conf_0; q= Conf_1;

 vv = 2; processes;
 Moment1 = Momentt;
 Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront;
 Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight;
 Normal_Forces1 = Normal_Forces;
 qm1 = qm;
 Force1 = Force;
 fc1 = fc;
 fc_Moment1 = fc_Moment;
 towc1 = towc;
 f_gravity1 = f_gravity;
 f_inertial1 = f_inertial;
 f_gravity_Moment1 = f_gravity_Moment;
 f_inertial_Moment1 = f_inertial_Moment;
 NF_moment1 = NF_moment;

232

 vv = 4; processes;
 Moment2 = Momentt;
 Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
 Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
 Normal_Forces2 = Normal_Forces;
 qm2 = qm;
 Force2 = Force;
 fc2 = fc;
 fc_Moment2 = fc_Moment;
 towc2 = towc;
 f_gravity2 = f_gravity;
 f_inertial2 = f_inertial;
 f_gravity_Moment2 = f_gravity_Moment;
 f_inertial_Moment2 = f_inertial_Moment;
 NF_moment2 = NF_moment;

 vv = 5; processes;
 Moment3 = Momentt;
 Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
 Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
 Normal_Forces3 = Normal_Forces;
 qm3 = qm;
 Force3 = Force;
 fc3 = fc;
 fc_Moment3 = fc_Moment;
 towc3 = towc;
 f_gravity3 = f_gravity;
 f_inertial3 = f_inertial;
 f_gravity_Moment3 = f_gravity_Moment;
 f_inertial_Moment3 = f_inertial_Moment;
 NF_moment3 = NF_moment;

 elseif which == 2,
 close all;
 Surface_geometry = 'F'; % GG1
 Touch = [1 1 1 1]';

 Rover_5 % q= Conf_5; q= Conf_0;

 vv = 2; processes;
 Moment1 = Momentt;
 Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront;
 Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight;
 Normal_Forces1 = Normal_Forces;
 qm1 = qm;
 Force1 = Force;
 fc1 = fc;
 fc_Moment1 = fc_Moment;
 towc1 = towc;
 f_gravity1 = f_gravity;
 f_inertial1 = f_inertial;
 f_gravity_Moment1 = f_gravity_Moment;

233

 f_inertial_Moment1 = f_inertial_Moment;
 NF_moment1 = NF_moment;

 vv = 4; processes;
 Moment2 = Momentt;
 Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
 Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
 Normal_Forces2 = Normal_Forces;
 qm2 = qm;
 Force2 = Force;
 fc2 = fc;
 fc_Moment2 = fc_Moment;
 towc2 = towc;
 f_gravity2 = f_gravity;
 f_inertial2 = f_inertial;
 f_gravity_Moment2 = f_gravity_Moment;
 f_inertial_Moment2 = f_inertial_Moment;
 NF_moment2 = NF_moment;

 vv = 5; processes;
 Moment3 = Momentt;
 Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
 Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
 Normal_Forces3 = Normal_Forces;
 qm3 = qm;
 Force3 = Force;
 fc3 = fc;
 fc_Moment3 = fc_Moment;
 towc3 = towc;
 f_gravity3 = f_gravity;
 f_inertial3 = f_inertial;
 f_gravity_Moment3 = f_gravity_Moment;
 f_inertial_Moment3 = f_inertial_Moment;
 NF_moment3 = NF_moment;

 elseif which == 3,
 close all;
 Surface_geometry = 'F'; % GG1
 Touch = [1 1 1 1]';

 Rover_7 % q= Conf_6; q= Conf_0;

 vv = 2; processes;
 Moment1 = Momentt;
 Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront;
 Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight;
 Normal_Forces1 = Normal_Forces;
 qm1 = qm;
 Force1 = Force;
 fc1 = fc;
 fc_Moment1 = fc_Moment;
 towc1 = towc;

234

 f_gravity1 = f_gravity;
 f_inertial1 = f_inertial;
 f_gravity_Moment1 = f_gravity_Moment;
 f_inertial_Moment1 = f_inertial_Moment;
 NF_moment1 = NF_moment;

 vv = 4; processes;
 Moment2 = Momentt;
 Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
 Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
 Normal_Forces2 = Normal_Forces;
 qm2 = qm;
 Force2 = Force;
 fc2 = fc;
 fc_Moment2 = fc_Moment;
 towc2 = towc;
 f_gravity2 = f_gravity;
 f_inertial2 = f_inertial;
 f_gravity_Moment2 = f_gravity_Moment;
 f_inertial_Moment2 = f_inertial_Moment;
 NF_moment2 = NF_moment;

 vv = 5; processes;
 Moment3 = Momentt;
 Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
 Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
 Normal_Forces3 = Normal_Forces;
 qm3 = qm;
 Force3 = Force;
 fc3 = fc;
 fc_Moment3 = fc_Moment;
 towc3 = towc;
 f_gravity3 = f_gravity;
 f_inertial3 = f_inertial;
 f_gravity_Moment3 = f_gravity_Moment;
 f_inertial_Moment3 = f_inertial_Moment;
 NF_moment3 = NF_moment;

 elseif which == 4,
 close all;
 Surface_geometry = 'F'; % GG1
 Touch = [1 1 1 1]';

 Rover_8 % q= Conf_7; q= Conf_0;

 vv = 2; processes;
 Moment1 = Momentt;
 Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront;
 Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight;
 Normal_Forces1 = Normal_Forces;
 qm1 = qm;
 Force1 = Force;

235

 fc1 = fc;
 fc_Moment1 = fc_Moment;
 towc1 = towc;
 f_gravity1 = f_gravity;
 f_inertial1 = f_inertial;
 f_gravity_Moment1 = f_gravity_Moment;
 f_inertial_Moment1 = f_inertial_Moment;
 NF_moment1 = NF_moment;

 vv = 4; processes;
 Moment2 = Momentt;
 Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
 Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
 Normal_Forces2 = Normal_Forces;
 qm2 = qm;
 Force2 = Force;
 fc2 = fc;
 fc_Moment2 = fc_Moment;
 towc2 = towc;
 f_gravity2 = f_gravity;
 f_inertial2 = f_inertial;
 f_gravity_Moment2 = f_gravity_Moment;
 f_inertial_Moment2 = f_inertial_Moment;
 NF_moment2 = NF_moment;

 vv = 5; processes;
 Moment3 = Momentt;
 Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
 Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
 Normal_Forces3 = Normal_Forces;
 qm3 = qm;
 Force3 = Force;
 fc3 = fc;
 fc_Moment3 = fc_Moment;
 towc3 = towc;
 f_gravity3 = f_gravity;
 f_inertial3 = f_inertial;
 f_gravity_Moment3 = f_gravity_Moment;
 f_inertial_Moment3 = f_inertial_Moment;
 NF_moment3 = NF_moment;

 elseif which == 5,
 close all;
 Surface_geometry = 'S'; % GG2
 Touch = [1 0 1 1]';

 Rover_6 % q= Conf_5; q= Conf_5;

 vv = 2; processes;
 Moment1 = Momentt;
 Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront;
 Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight;

236

 Normal_Forces1 = Normal_Forces;
 qm1 = qm;
 Force1 = Force;
 fc1 = fc;
 fc_Moment1 = fc_Moment;
 towc1 = towc;
 f_gravity1 = f_gravity;
 f_inertial1 = f_inertial;
 f_gravity_Moment1 = f_gravity_Moment;
 f_inertial_Moment1 = f_inertial_Moment;
 NF_moment1 = NF_moment;

 vv = 4; processes;
 Moment2 = Momentt;
 Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
 Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
 Normal_Forces2 = Normal_Forces;
 qm2 = qm;
 Force2 = Force;
 fc2 = fc;
 fc_Moment2 = fc_Moment;
 towc2 = towc;
 f_gravity2 = f_gravity;
 f_inertial2 = f_inertial;
 f_gravity_Moment2 = f_gravity_Moment;
 f_inertial_Moment2 = f_inertial_Moment;
 NF_moment2 = NF_moment;

 vv = 5; processes;
 Moment3 = Momentt;
 Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
 Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
 Normal_Forces3 = Normal_Forces;
 qm3 = qm;
 Force3 = Force;
 fc3 = fc;
 fc_Moment3 = fc_Moment;
 towc3 = towc;
 f_gravity3 = f_gravity;
 f_inertial3 = f_inertial;
 f_gravity_Moment3 = f_gravity_Moment;
 f_inertial_Moment3 = f_inertial_Moment;
 NF_moment3 = NF_moment;

 elseif which == 6,
 close all;
 Surface_geometry = 'S'; % GG2
 Touch = [1 0 1 1]';

 Rover_1 % q= Conf_0; q= Conf_1;
 vv = 2; processes;
 Moment1 = Momentt;

237

 Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront;
 Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight;
 Normal_Forces1 = Normal_Forces;
 qm1 = qm;
 Force1 = Force;
 fc1 = fc;
 fc_Moment1 = fc_Moment;
 towc1 = towc;
 f_gravity1 = f_gravity;
 f_inertial1 = f_inertial;
 f_gravity_Moment1 = f_gravity_Moment;
 f_inertial_Moment1 = f_inertial_Moment;
 NF_moment1 = NF_moment;

 Rover_10 % q= Conf_0; q= Conf_9;
 vv = 2; processes;
 Moment2 = Momentt;
 Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
 Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
 Normal_Forces2 = Normal_Forces;
 qm2 = qm;
 Force2 = Force;
 fc2 = fc;
 fc_Moment2 = fc_Moment;
 towc2 = towc;
 f_gravity2 = f_gravity;
 f_inertial2 = f_inertial;
 f_gravity_Moment2 = f_gravity_Moment;
 f_inertial_Moment2 = f_inertial_Moment;
 NF_moment2 = NF_moment;

 Rover_9 % q= Conf_0; q= Conf_8;
 vv = 2; processes;
 Moment3 = Momentt;
 Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
 Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
 Normal_Forces3 = Normal_Forces;
 qm3 = qm;
 Force3 = Force;
 fc3 = fc;
 fc_Moment3 = fc_Moment;
 towc3 = towc;
 f_gravity3 = f_gravity;
 f_inertial3 = f_inertial;
 f_gravity_Moment3 = f_gravity_Moment;
 f_inertial_Moment3 = f_inertial_Moment;
 NF_moment3 = NF_moment;

 elseif which == 7,
 close all;
 Surface_geometry = 'I'; % GG9
 Touch = [1 1 1 1]';

238

 Rover_1 % q= Conf_0; q= Conf_1;
 vv = 2.5; processes;
 Moment1 = Momentt;
 Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront;
 Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight;
 Normal_Forces1 = Normal_Forces;
 qm1 = qm;
 Force1 = Force;
 fc1 = fc;
 fc_Moment1 = fc_Moment;
 towc1 = towc;
 f_gravity1 = f_gravity;
 f_inertial1 = f_inertial;
 f_gravity_Moment1 = f_gravity_Moment;
 f_inertial_Moment1 = f_inertial_Moment;
 NF_moment1 = NF_moment;

 Rover_12 % q= Conf_0; q= Conf_11;
 vv = 2.5; processes;
 Moment2 = Momentt;
 Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
 Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
 Normal_Forces2 = Normal_Forces;
 qm2 = qm;
 Force2 = Force;
 fc2 = fc;
 fc_Moment2 = fc_Moment;
 towc2 = towc;
 f_gravity2 = f_gravity;
 f_inertial2 = f_inertial;
 f_gravity_Moment2 = f_gravity_Moment;
 f_inertial_Moment2 = f_inertial_Moment;
 NF_moment2 = NF_moment;

 Rover_11 % q= Conf_0; q= Conf_10;
 vv = 2.5; processes;
 Moment3 = Momentt;
 Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
 Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
 Normal_Forces3 = Normal_Forces;
 qm3 = qm;
 Force3 = Force;
 fc3 = fc;
 fc_Moment3 = fc_Moment;
 towc3 = towc;
 f_gravity3 = f_gravity;
 f_inertial3 = f_inertial;
 f_gravity_Moment3 = f_gravity_Moment;
 f_inertial_Moment3 = f_inertial_Moment;
 NF_moment3 = NF_moment;

239

 elseif which == 8,
 close all;
 Surface_geometry = 'FI'; % GG5
 Touch = [1 1 1 1]';
 Rover_1 % q= Conf_0; q= Conf_1;

 vv = 0.5; processes;
 Moment1 = Momentt;
 Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront;
 Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight;
 Normal_Forces1 = Normal_Forces;
 qm1 = qm;
 Force1 = Force;
 fc1 = fc;
 fc_Moment1 = fc_Moment;
 towc1 = towc;
 f_gravity1 = f_gravity;
 f_inertial1 = f_inertial;
 f_gravity_Moment1 = f_gravity_Moment;
 f_inertial_Moment1 = f_inertial_Moment;
 NF_moment1 = NF_moment;

 Rover_14 % q= Conf_13; q= Conf_13;
 vv = 0.5; processes;
 Moment2 = Momentt;
 Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
 Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
 Normal_Forces2 = Normal_Forces;
 qm2 = qm;
 Force2 = Force;
 fc2 = fc;
 fc_Moment2 = fc_Moment;
 towc2 = towc;
 f_gravity2 = f_gravity;
 f_inertial2 = f_inertial;
 f_gravity_Moment2 = f_gravity_Moment;
 f_inertial_Moment2 = f_inertial_Moment;
 NF_moment2 = NF_moment;

 Rover_13 % q= Conf_12; q= Conf_12;
 vv = 0.5; processes;
 Moment3 = Momentt;
 Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
 Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
 Normal_Forces3 = Normal_Forces;
 qm3 = qm;
 Force3 = Force;
 fc3 = fc;
 fc_Moment3 = fc_Moment;
 towc3 = towc;
 f_gravity3 = f_gravity;
 f_inertial3 = f_inertial;

240

 f_gravity_Moment3 = f_gravity_Moment;
 f_inertial_Moment3 = f_inertial_Moment;
 NF_moment3 = NF_moment;

 elseif which == 9,
 close all;
 Surface_geometry = 'D'; % GG7
 Touch = [1 1 1 1]';
 Rover_14 % q= Conf_15; q= Conf_15;

 vv = 1; processes;
 Moment1 = Momentt;
 Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront;
 Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight;
 Normal_Forces1 = Normal_Forces;
 qm1 = qm;
 Force1 = Force;
 fc1 = fc;
 fc_Moment1 = fc_Moment;
 towc1 = towc;
 f_gravity1 = f_gravity;
 f_inertial1 = f_inertial;
 f_gravity_Moment1 = f_gravity_Moment;
 f_inertial_Moment1 = f_inertial_Moment;
 NF_moment1 = NF_moment;

 Rover_14 % q= Conf_15; q= Conf_15;
 vv = 2; processes;
 Moment2 = Momentt;
 Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
 Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
 Normal_Forces2 = Normal_Forces;
 qm2 = qm;
 Force2 = Force;
 fc2 = fc;
 fc_Moment2 = fc_Moment;
 towc2 = towc;
 f_gravity2 = f_gravity;
 f_inertial2 = f_inertial;
 f_gravity_Moment2 = f_gravity_Moment;
 f_inertial_Moment2 = f_inertial_Moment;
 NF_moment2 = NF_moment;

 Rover_14 % q= Conf_15; q= Conf_15;
 vv = 3; processes;
 Moment3 = Momentt;
 Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
 Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
 Normal_Forces3 = Normal_Forces;
 qm3 = qm;
 Force3 = Force;
 fc3 = fc;

241

 fc_Moment3 = fc_Moment;
 towc3 = towc;
 f_gravity3 = f_gravity;
 f_inertial3 = f_inertial;
 f_gravity_Moment3 = f_gravity_Moment;
 f_inertial_Moment3 = f_inertial_Moment;
 NF_moment3 = NF_moment;

 elseif which == 10,
 close all;
 Surface_geometry = 'U'; % GG11
 Touch = [1 1 1 1]';
 Rover_16 % q= Conf_0; q= Conf_14;

 vv = 0.05; processes;
 Moment1 = Momentt;
 Tow_CRear1 = Tow_CRear; Tow_CFront1 = Tow_CFront;
 Tow_CLeft1 = Tow_CLeft; Tow_CRight1 = Tow_CRight;
 Normal_Forces1 = Normal_Forces;
 qm1 = qm;
 Force1 = Force;
 fc1 = fc;
 fc_Moment1 = fc_Moment;
 towc1 = towc;
 f_gravity1 = f_gravity;
 f_inertial1 = f_inertial;
 f_gravity_Moment1 = f_gravity_Moment;
 f_inertial_Moment1 = f_inertial_Moment;
 NF_moment1 = NF_moment;

 Rover_16 % q= Conf_0; q= Conf_14;
 vv = 0.05; processes;
 Moment2 = Momentt;
 Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
 Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
 Normal_Forces2 = Normal_Forces;
 qm2 = qm;
 Force2 = Force;
 fc2 = fc;
 fc_Moment2 = fc_Moment;
 towc2 = towc;
 f_gravity2 = f_gravity;
 f_inertial2 = f_inertial;
 f_gravity_Moment2 = f_gravity_Moment;
 f_inertial_Moment2 = f_inertial_Moment;
 NF_moment2 = NF_moment;

 Rover_16 % q= Conf_0; q= Conf_14;
 vv = 1; processes;
 Moment3 = Momentt;
 Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;

242

 Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
 Normal_Forces3 = Normal_Forces;
 qm3 = qm;
 Force3 = Force;
 fc3 = fc;
 fc_Moment3 = fc_Moment;
 towc3 = towc;
 f_gravity3 = f_gravity;
 f_inertial3 = f_inertial;
 f_gravity_Moment3 = f_gravity_Moment;
 f_inertial_Moment3 = f_inertial_Moment;
 NF_moment3 = NF_moment;

 elseif which == 11,
 close all;
 break;
 end

%______________________________
% Figures of Results
%

 figure(1)
 subplot(3,1,1)
 hold on
 plot(t, qm1(1,1:np)*180/pi, 'k-', 'linewidth',2)
 plot(t, qm2(1,1:np)*180/pi, 'g-', 'linewidth',2)
 plot(t, qm3(1,1:np)*180/pi, 'b-', 'linewidth',2)
 title('platform orientation angles w/2 universal frame')
 ylabel('Psi (deg)')
 grid
 hold off

 subplot(3,1,2)
 hold on
 plot(t, qm1(2,1:np)*180/pi, 'k-', 'linewidth',2)
 plot(t, qm2(2,1:np)*180/pi, 'g-', 'linewidth',2)
 plot(t, qm3(2,1:np)*180/pi, 'b-', 'linewidth',2)
 ylabel('Phi (deg)')
 grid
 hold off

 subplot(3,1,3)
 hold on
 plot(t, qm1(3,1:np)*180/pi, 'k', 'linewidth',2)
 plot(t, qm2(3,1:np)*180/pi, 'g', 'linewidth',2)
 plot(t, qm3(3,1:np)*180/pi, 'b', 'linewidth',2)
 xlabel('Time (s)');
 ylabel('Theta (deg)')
 grid
 hold off

243

 figure(2)

 subplot(4,1,1)
 hold on
 %axis([.01 np-1 -1 30])
 plot(t, Normal_Forces1(1,1:np), 'k-', 'linewidth',2)
 plot(t, Normal_Forces2(1,1:np), 'g-', 'linewidth',2)
 plot(t, Normal_Forces3(1,1:np), 'b-', 'linewidth',2)
 title('Normal force exerted on contact wheels')
 ylabel('FnRF')
 grid
 hold off

 subplot(4,1,2)
 hold on
 %axis([.01 np-1 -1 15])
 plot(t, Normal_Forces1(2,1:np), 'k-', 'linewidth',2)
 plot(t, Normal_Forces2(2,1:np), 'g-', 'linewidth',2)
 plot(t, Normal_Forces3(2,1:np), 'b-', 'linewidth',2)
 ylabel('FnRR')
 grid
 hold off

 subplot(4,1,3)
 hold on
 %axis([.01 np-1 -1 30])
 plot(t, Normal_Forces1(3,1:np), 'k-', 'linewidth',2)
 plot(t, Normal_Forces2(3,1:np), 'g-', 'linewidth',2)
 plot(t, Normal_Forces3(3,1:np), 'b-', 'linewidth',2)
 ylabel('FnLF')
 grid
 hold off

 subplot(4,1,4)
 hold on
 %axis([.01 np-1 -1 15])
 plot(t, Normal_Forces1(4,1:np), 'k-', 'linewidth',2)
 plot(t, Normal_Forces2(4,1:np), 'g-', 'linewidth',2)
 plot(t, Normal_Forces3(4,1:np), 'b-', 'linewidth',2)
 xlabel('Time (s)');
 ylabel('FnLR')
 grid
 hold off

 figure(3)

 hold on
 plot(t, Tow_CRear1(1:np),'k--', 'linewidth',2)
 plot(t, Tow_CRear2(1:np),'g--', 'linewidth',2)
 plot(t, Tow_CRear3(1:np),'b--', 'linewidth',2)

 plot(t, Moment1(3,1:np),'k-', 'linewidth',2)

244

 plot(t, Moment2(3,1:np),'g-', 'linewidth',2)
 plot(t, Moment3(3,1:np),'b-', 'linewidth',2)

 plot(t, Tow_CFront1(1:np),'k--', 'linewidth',2)
 plot(t, Tow_CFront2(1:np),'g--', 'linewidth',2)
 plot(t, Tow_CFront3(1:np),'b--', 'linewidth',2)

 title('exerted Moment about zu-axis of universal frame')
 ylabel('TU(3) (N.m)')
 xlabel('Time (s)');
 grid
 hold off

 figure(4)

 hold on
 plot(t, Tow_CLeft1(1:np),'k--', 'linewidth',2)
 plot(t, Tow_CLeft2(1:np),'g--', 'linewidth',2)
 plot(t, Tow_CLeft3(1:np),'b--', 'linewidth',2)

 plot(t, Moment1(2,1:np),'k-', 'linewidth',2)
 plot(t, Moment2(2,1:np),'g-', 'linewidth',2)
 plot(t, Moment3(2,1:np),'b-', 'linewidth',2)

 plot(t, Tow_CRight1(1:np),'k--', 'linewidth',2)
 plot(t, Tow_CRight2(1:np),'g--', 'linewidth',2)
 plot(t, Tow_CRight3(1:np),'b--', 'linewidth',2)

 title('exerted Moment about yu-axis of universal frame')
 ylabel('TU(2) (N.m)')
 xlabel('Time (s)');
 grid
 hold off

 figure(5)
 subplot(3,1,1)
 hold on
 plot(t, Force1(1,1:np), 'k-', 'linewidth',2)
 plot(t, Force2(1,1:np), 'g-', 'linewidth',2)
 plot(t, Force3(1,1:np), 'b-', 'linewidth',2)
 title('Universal force (N)')
 ylabel('F_X_u')
 grid
 hold off

 subplot(3,1,2)
 hold on
 plot(t, Force1(2,1:np), 'k-', 'linewidth',2)
 plot(t, Force2(2,1:np), 'g-', 'linewidth',2)
 plot(t, Force3(2,1:np), 'b-', 'linewidth',2)
 ylabel('F_Y_u')
 grid

245

 hold off

 subplot(3,1,3)
 hold on
 plot(t, Force1(3,1:np), 'k', 'linewidth',2)
 plot(t, Force2(3,1:np), 'g', 'linewidth',2)
 plot(t, Force3(3,1:np), 'b', 'linewidth',2)
 xlabel('Time (s)');
 ylabel('F_Z_u')
 grid
 hold off

 figure(6)
 subplot(3,1,1)
 hold on
 plot(t, fc1(1,1:np), 'k-', 'linewidth',2)
 plot(t, fc2(1,1:np), 'g-', 'linewidth',2)
 plot(t, fc3(1,1:np), 'b-', 'linewidth',2)
 title('Universal fc (N)')
 ylabel('fc_X_u')
 grid
 hold off

 subplot(3,1,2)
 hold on
 plot(t, fc1(2,1:np), 'k-', 'linewidth',2)
 plot(t, fc2(2,1:np), 'g-', 'linewidth',2)
 plot(t, fc3(2,1:np), 'b-', 'linewidth',2)
 ylabel('fc_Y_u')
 grid
 hold off

 subplot(3,1,3)
 hold on
 plot(t, fc1(3,1:np), 'k', 'linewidth',2)
 plot(t, fc2(3,1:np), 'g', 'linewidth',2)
 plot(t, fc3(3,1:np), 'b', 'linewidth',2)
 xlabel('Time (s)');
 ylabel('fc_Z_u')
 grid
 hold off

 figure(7)
 subplot(3,1,1)
 hold on
 plot(t, fc_Moment1(1,1:np), 'k-', 'linewidth',2)
 plot(t, fc_Moment2(1,1:np), 'g-', 'linewidth',2)
 plot(t, fc_Moment3(1,1:np), 'b-', 'linewidth',2)
 title('Universal fc Moment (N.m)')
 ylabel('fc Moment_X_u')
 grid
 hold off

246

 subplot(3,1,2)
 hold on
 plot(t, fc_Moment1(2,1:np), 'k-', 'linewidth',2)
 plot(t, fc_Moment2(2,1:np), 'g-', 'linewidth',2)
 plot(t, fc_Moment3(2,1:np), 'b-', 'linewidth',2)
 ylabel('fc Moment_Y_u')
 grid
 hold off

 subplot(3,1,3)
 hold on
 plot(t, fc_Moment1(3,1:np), 'k', 'linewidth',2)
 plot(t, fc_Moment2(3,1:np), 'g', 'linewidth',2)
 plot(t, fc_Moment3(3,1:np), 'b', 'linewidth',2)
 xlabel('Time (s)');
 ylabel('fc Moment_z_u')
 grid
 hold off

 figure(8)
 subplot(3,1,1)
 hold on
 plot(t, towc1(1,1:np), 'k-', 'linewidth',2)
 plot(t, towc2(1,1:np), 'g-', 'linewidth',2)
 plot(t, towc3(1,1:np), 'b-', 'linewidth',2)
 title('Universal towc (N.m)')
 ylabel('towc_x_u')
 grid
 hold off

 subplot(3,1,2)
 hold on
 plot(t, towc1(2,1:np), 'k-', 'linewidth',2)
 plot(t, towc2(2,1:np), 'g-', 'linewidth',2)
 plot(t, towc3(2,1:np), 'b-', 'linewidth',2)
 ylabel('towc_y_u')
 grid
 hold off

 subplot(3,1,3)
 hold on
 plot(t, towc1(3,1:np), 'k', 'linewidth',2)
 plot(t, towc2(3,1:np), 'g', 'linewidth',2)
 plot(t, towc3(3,1:np), 'b', 'linewidth',2)
 xlabel('Time (s)');
 ylabel('towc_z_u')
 grid
 hold off

figure(9)

247

 subplot(3,1,1)
 hold on
 plot(t, f_gravity1(1,1:np), 'k-', 'linewidth',2)
 plot(t, f_gravity2(1,1:np), 'g-', 'linewidth',2)
 plot(t, f_gravity3(1,1:np), 'b-', 'linewidth',2)
 title('Universal gravity force resulted from center of mass of links(N)')
 ylabel('Gravity force_x_u')
 grid
 hold off

 subplot(3,1,2)
 hold on
 plot(t, f_gravity1(2,1:np), 'k-', 'linewidth',2)
 plot(t, f_gravity2(2,1:np), 'g-', 'linewidth',2)
 plot(t, f_gravity3(2,1:np), 'b-', 'linewidth',2)
 ylabel('Gravity force_y_u')
 grid
 hold off

 subplot(3,1,3)
 hold on
 plot(t, f_gravity1(3,1:np), 'k', 'linewidth',2)
 plot(t, f_gravity2(3,1:np), 'g', 'linewidth',2)
 plot(t, f_gravity3(3,1:np), 'b', 'linewidth',2)
 xlabel('Time (s)');
 ylabel('Gravity force_z_u')
 grid
 hold off

 figure(10)
 subplot(3,1,1)
 hold on
 plot(t, f_inertial1(1,1:np), 'k-', 'linewidth',2)
 plot(t, f_inertial2(1,1:np), 'g-', 'linewidth',2)
 plot(t, f_inertial3(1,1:np), 'b-', 'linewidth',2)
 title('Universal inertial force resulted from center of mass of links(N)')
 ylabel('Inertial force_x_u')
 grid
 hold off

 subplot(3,1,2)
 hold on
 plot(t, f_inertial1(2,1:np), 'k-', 'linewidth',2)
 plot(t, f_inertial2(2,1:np), 'g-', 'linewidth',2)
 plot(t, f_inertial3(2,1:np), 'b-', 'linewidth',2)
 ylabel('Inertial force_y_u')
 grid
 hold off

 subplot(3,1,3)
 hold on
 plot(t, f_inertial1(3,1:np), 'k', 'linewidth',2)

248

 plot(t, f_inertial2(3,1:np), 'g', 'linewidth',2)
 plot(t, f_inertial3(3,1:np), 'b', 'linewidth',2)
 xlabel('Time (s)');
 ylabel('Inertial force_z_u')
 grid
 hold off

figure(11)
 subplot(3,1,1)
 hold on
 plot(t, f_gravity_Moment1(1,1:np), 'k-', 'linewidth',2)
 plot(t, f_gravity_Moment2(1,1:np), 'g-', 'linewidth',2)
 plot(t, f_gravity_Moment3(1,1:np), 'b-', 'linewidth',2)
 title('Universal Moment of gravity force resulted from center of mass of links(N.m)')
 ylabel('Gravity Moment_x_u')
 grid
 hold off

 subplot(3,1,2)
 hold on
 plot(t, f_gravity_Moment1(2,1:np), 'k-', 'linewidth',2)
 plot(t, f_gravity_Moment2(2,1:np), 'g-', 'linewidth',2)
 plot(t, f_gravity_Moment3(2,1:np), 'b-', 'linewidth',2)
 ylabel('Gravity Moment_y_u')
 grid
 hold off

 subplot(3,1,3)
 hold on
 plot(t, f_gravity_Moment1(3,1:np), 'k', 'linewidth',2)
 plot(t, f_gravity_Moment2(3,1:np), 'g', 'linewidth',2)
 plot(t, f_gravity_Moment3(3,1:np), 'b', 'linewidth',2)
 xlabel('Time (s)');
 ylabel('Gravity Moment_z_u')
 grid
 hold off

 figure(12)
 subplot(3,1,1)
 hold on
 plot(t, f_inertial_Moment1(1,1:np), 'k-', 'linewidth',2)
 plot(t, f_inertial_Moment2(1,1:np), 'g-', 'linewidth',2)
 plot(t, f_inertial_Moment3(1,1:np), 'b-', 'linewidth',2)
 title('Universal Moment of inertial force resulted from center of mass of links(N.m)')
 ylabel('Inertial Moment_x_u')
 grid
 hold off

 subplot(3,1,2)
 hold on
 plot(t, f_inertial_Moment1(2,1:np), 'k-', 'linewidth',2)
 plot(t, f_inertial_Moment2(2,1:np), 'g-', 'linewidth',2)

249

 plot(t, f_inertial_Moment3(2,1:np), 'b-', 'linewidth',2)
 ylabel('Inertial Moment_y_u')
 grid
 hold off

 subplot(3,1,3)
 hold on
 plot(t, f_inertial_Moment1(3,1:np), 'k', 'linewidth',2)
 plot(t, f_inertial_Moment2(3,1:np), 'g', 'linewidth',2)
 plot(t, f_inertial_Moment3(3,1:np), 'b', 'linewidth',2)
 xlabel('Time (s)');
 ylabel('Inertial Moment_z_u')
 grid
 hold off

 figure(13)
 subplot(3,1,1)
 hold on
 plot(t, NF_moment1(1,1:np), 'k-', 'linewidth',2)
 plot(t, NF_moment2(1,1:np), 'g-', 'linewidth',2)
 plot(t, NF_moment3(1,1:np), 'b-', 'linewidth',2)
 title('Universal moments resulted from normal forces (N.m)')
 ylabel('NF moment_x_u')
 grid
 hold off

 subplot(3,1,2)
 hold on
 plot(t, NF_moment1(2,1:np), 'k-', 'linewidth',2)
 plot(t, NF_moment2(2,1:np), 'g-', 'linewidth',2)
 plot(t, NF_moment3(2,1:np), 'b-', 'linewidth',2)
 ylabel('NF moment_y_u')
 grid
 hold off

 subplot(3,1,3)
 hold on
 plot(t, NF_moment1(3,1:np), 'k', 'linewidth',2)
 plot(t, NF_moment2(3,1:np), 'g', 'linewidth',2)
 plot(t, NF_moment3(3,1:np), 'b', 'linewidth',2)
 xlabel('Time (s)');
 ylabel('NF moment_z_u')
 grid
 hold off

end

250

Processes.m

 n = numrows(dh_dyn);
 d = dh_dyn(2:n,2);
 a = dh_dyn(2:n,3);
alpha = dh_dyn(2:n,4);
 r = a(4); % radius of wheel

 TOL = 0.00001; % tolerance value
%___________________
% create time vector
%
 t = [0:1:200];
 np = numcols(t);

%_____________________
% trajectory of joints
%
[q_RF,qd_RF,qdd_RF] = jtraj(q0(:,1), q1(:,1), t); % joint coordinate trajectory of right front leg
[q_RR,qd_RR,qdd_RR] = jtraj(q0(:,2), q1(:,2), t); % joint coordinate trajectory of right rear leg
[q_LF,qd_LF,qdd_LF] = jtraj(q0(:,3), q1(:,3), t); % joint coordinate trajectory of left front leg
[q_LR,qd_LR,qdd_LR] = jtraj(q0(:,4), q1(:,4), t); % joint coordinate trajectory of left rear leg

if Locomotion_Case == 'ST'

[At4RF, At4RR, At4LF, At4LR, Vt4RF, Vt4RR, Vt4LF, Vt4LR, d_4RF, d_4RR, d_4LF, d_4LR,...
 Thetadd_RF, Thetadd_RR, Thetadd_LF, Thetadd_LR, Thetad_RF, Thetad_RR, Thetad_LF,
Thetad_LR,...
 Theta_RF, Theta_RR, Theta_LF, Theta_LR, tdelay_R, tdelay_L] = locomotion_ST(vv, t, a, q0);

elseif Locomotion_Case == 'DN'

[At4RF, At4RR, At4LF, At4LR, Vt4RF, Vt4RR, Vt4LF, Vt4LR, d_4RF, d_4RR, d_4LF, d_4LR,...
 Thetadd_RF, Thetadd_RR, Thetadd_LF, Thetadd_LR, Thetad_RF, Thetad_RR, Thetad_LF,
Thetad_LR,...
 Theta_RF, Theta_RR, Theta_LF, Theta_LR, tdelay_R, tdelay_L] = locomotion_DN(Touch, vv, t, a, q0);
end

q_RF(:,4) = Theta_RF; qd_RF(:,4) = Thetad_RF; qdd_RF(:,4) = Thetadd_RF;
q_RR(:,4) = Theta_RR; qd_RR(:,4) = Thetad_RR; qdd_RR(:,4) = Thetadd_RR;
q_LF(:,4) = Theta_LF; qd_LF(:,4) = Thetad_LF; qdd_LF(:,4) = Thetadd_LF;
q_LR(:,4) = Theta_LR; qd_LR(:,4) = Thetad_LR; qdd_LR(:,4) = Thetadd_LR;

q_RF = q_RF'; qd_RF = qd_RF'; qdd_RF = qdd_RF';
q_RR = q_RR'; qd_RR = qd_RR'; qdd_RR = qdd_RR';
q_LF = q_LF'; qd_LF = qd_LF'; qdd_LF = qdd_LF';
q_LR = q_LR'; qd_LR = qd_LR'; qdd_LR = qdd_LR';
%___
%________________
% Ground geometry

251

%

if Surface_geometry == 'F'

[input_RF, input_RR, input_LF, input_LR, ...
beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs, ...
beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG1(t, tdelay_R, tdelay_L, a, q0);

elseif Surface_geometry == 'S'

[input_RF, input_RR, input_LF, input_LR, ...
beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs, ...
beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG2(t, tdelay_R, tdelay_L, a, q0);

elseif Surface_geometry == 'I'

[input_RF, input_RR, input_LF, input_LR, ...
beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs, ...
beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG9(t, tdelay_R, tdelay_L, a, q0);

elseif Surface_geometry == 'FI'

[input_RF, input_RR, input_LF, input_LR, ...
beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs, ...
beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG5(t, tdelay_R, tdelay_L, a, q0);

elseif Surface_geometry == 'D'

[input_RF, input_RR, input_LF, input_LR, ...
beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs, ...
beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG7(t, tdelay_R, tdelay_L, a, q0);

elseif Surface_geometry == 'U'

[input_RF, input_RR, input_LF, input_LR, ...
beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs, ...
beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG11(t, tdelay_R, tdelay_L, a, q0,...
 d_4RF, d_4RR, d_4LF, d_4LR);

end

theta_S_zs = [beta_SRF_zs; beta_SRR_zs; beta_SLF_zs; beta_SLR_zs];
theta_S_ys = [beta_SRF_ys; beta_SRR_ys; beta_SLF_ys; beta_SLR_ys];

%_______________________
% surface flatness check
%
 for p=1:np,

 if (input_RF(p) == input_RR(p)) && (input_LF(p) == input_LR(p)) && (input_RF(p) ==
input_LF(p))
 Flat_surface(p) = 1;

252

 else
 Flat_surface(p) = 0;
 end
 end

%__________________
% Platform Attitute
%

Touches = [];

qm=[];

A_0R_0L =[1 0 0 0;...
 0 -1 0 0;...
 0 0 -1 0;...
 0 0 0 1];

 q_RK = q_RF;
 q_LK = q_LF;

 input_RK = input_RF;
 input_LK = input_LF;

 B3_RK = beta_SRF_zs;
 B3_LK = beta_SLF_zs;

for p=1:np,

 %______Pitch angle_____________
 theta_1R = q_RK(1, p);
 theta_1L = q_LK(1, p);

 Theta = (theta_1R - theta_1L)/2 + ...
 asin((input_RR(p) - input_RF(p))/(-a(3)*sin(q_RF(3,p))+a(3)*sin(q_RR(3,p))));

 %_______Yaw angle______________
 theta_4RK = q_RK(4, p);
 theta_4LK = q_LK(4, p);

 [A_0R_4RK] = Kinematic(q_RK(:,p)', d, a, alpha, B3_RK(p), Theta);
 [A_0L_4LK] = Kinematic(q_LK(:,p)', d, a, alpha, -B3_LK(p), -Theta);

 r_0R_4RK = A_0R_4RK(1:3, 4);
 A_0R_4LK = A_0R_0L * A_0L_4LK;
 r_0R_4LK = A_0R_4LK(1:3, 4);

 Psi = (-r*theta_4LK - r*theta_4RK)/(r_0R_4RK(3) - r_0R_4LK(3));

 %_______Roll angle angle______________
 r_4RK_G_xU = -input_RK(p);

253

 r_4LK_G_xU = -input_LK(p);

 AA = r_0R_4RK(1) - r_0R_4LK(1);
 if abs(AA)< TOL
 AA = 0;
 end

 BB = r_0R_4RK(3) - r_0R_4LK(3) - 4*d(1);
 if abs(BB)< TOL
 BB = 0;
 end

 if (BB) >= 0

 alfa = -atan2(AA,BB);

 elseif (BB) < 0
 if AA < 0
 alfa = -pi - atan2(AA,(BB));
 elseif AA >= 0
 alfa = pi - atan2(AA,(BB));
 end
 end

 Phi = asin((-r_4RK_G_xU + r_4LK_G_xU)/...
 (sqrt((r_0R_4RK(1) - r_0R_4LK(1))^2 + (r_0R_4RK(3) - r_0R_4LK(3) - 4*d(1))^2))) - alfa;

 Ph= Phi *180/pi;

 angle_0 = [Psi; Phi; Theta];
 qm = [qm angle_0];

%
% Contact Points in case of random surface
%
if Surface_geometry == 'U'

 if Phi > 0
 Touch_Legs = [1 0 1 1]';
 elseif Phi < 0
 Touch_Legs = [1 1 1 0]';
 elseif Phi == 0
 Touch_Legs = Touch;
 end

else
 Touch_Legs = Touch;
end

Touches = [Touches Touch_Legs];

% contact check

254

A_U_0R = roty(Phi) * rotz(Theta) * rotx(Psi);

A_U_4RK = A_U_0R * A_0R_4RK;
r_U_4RK = A_U_4RK(1:3, 4);

r_4RK_G = [r_4RK_G_xU -r_U_4RK(2) -r_U_4RK(3)]';

r_U_G = r_U_4RK + r_4RK_G;

A_U_G = [1 0 0 r_U_G(1)
 0 1 0 r_U_G(2)
 0 0 1 r_U_G(3)
 0 0 0 1];

A_G_U = inv(A_U_G);
A_G_4RK = A_G_U * A_U_0R * A_0R_4RK;
ss='RF';
A_0R_U = inv(A_U_0R);
A_0R_4RK = A_0R_U * A_U_G * A_G_4RK;
theta_RK = invkinematic(A_0R_4RK, ss);

%----
A_U_4LK = A_U_0R * A_0R_4LK;
r_U_4LK = A_U_4LK(1:3, 4);

r_4LK_G = [r_4LK_G_xU -r_U_4LK(2) -r_U_4LK(3)]';

r_U_G = r_U_4LK + r_4LK_G;

A_U_G = [1 0 0 r_U_G(1)
 0 1 0 r_U_G(2)
 0 0 1 r_U_G(3)
 0 0 0 1];

A_G_U = inv(A_U_G);
A_G_4LK = A_G_U * A_U_0R * A_0R_0L * A_0L_4LK;
ss='LF';
A_0L_0R = inv(A_0R_0L);
A_0L_4LK = A_0L_0R * A_0R_U * A_U_G * A_G_4LK;
theta_LK = invkinematic(A_0L_4LK, ss);

end

 qmd = zeros(3, np);
 qmdd = zeros(3, np);

[nr, nc] = size(qm);

% test for accuracy
for i=1:nr

255

 for j=1:nc
 if abs(qm(i,j)) < TOL
 qm(i,j) = 0;
 end
 end
end

%__
% Tansformation Matrix of wheel frame, universal wheel frame, surface frame

R4RF_SRF = [];
R4RR_SRR = [];
R4LF_SLF = [];
R4LR_SLR = [];

for p=1:np

 A_U_0R = roty(qm(2,p)) * rotz(qm(3,p)) * rotx(qm(1,p));

 [A_0R_4RF] = Kinematic(q_RF(:,p)', d, a, alpha, beta_SRF_zs(p), qm(3,p));
 [A_0R_4RR] = Kinematic(q_RR(:,p)', d, a, alpha, beta_SRR_zs(p), qm(3,p));
 [A_0L_4LF] = Kinematic(q_LF(:,p)', d, a, alpha,-beta_SLF_zs(p),-qm(3,p));
 [A_0L_4LR] = Kinematic(q_LR(:,p)', d, a, alpha,-beta_SLR_zs(p),-qm(3,p));

 A_U_4RF = A_U_0R * A_0R_4RF;
 A_U_4RR = A_U_0R * A_0R_4RR;
 A_U_4LF = A_U_0R * A_0R_0L * A_0L_4LF;
 A_U_4LR = A_U_0R * A_0R_0L * A_0L_4LR;

 % Right Front
 [alpha_1,alpha_2,alpha_3] = HT_2_RPY(A_U_4RF);
 A_WRF_4RF = roty(alpha_2)*rotz(alpha_3)*rotx(alpha_1); % Wheel Universal frame
 A_WRF_SRF = roty(beta_SRF_ys(p)) * rotz(beta_SRF_zs(p)); % Surface Frame
 A_4RF_WRF = A_WRF_4RF';
 A_4RF_SRF = A_4RF_WRF * A_WRF_SRF;
 R_4RF_SRF = A_4RF_SRF(1:3,1:3);

 % Right Rear
 [alpha_1,alpha_2,alpha_3] = HT_2_RPY(A_U_4RR);
 A_WRR_4RR = roty(alpha_2)*rotz(alpha_3)*rotx(alpha_1); % Wheel Universal frame
 A_WRR_SRR = roty(beta_SRR_ys(p)) * rotz(beta_SRR_zs(p)); % Surface Frame
 A_4RR_WRR = A_WRR_4RR';
 A_4RR_SRR = A_4RR_WRR * A_WRR_SRR;
 R_4RR_SRR = A_4RR_SRR(1:3,1:3);

 % Left Front
 [alpha_1,alpha_2,alpha_3] = HT_2_RPY(A_U_4LF);
 A_WLF_4LF = roty(alpha_2)*rotz(alpha_3)*rotx(alpha_1); % Wheel Universal frame
 A_WLF_SLF = roty(beta_SLF_ys(p)) * rotz(beta_SLF_zs(p)); % Surface Frame
 A_4LF_WLF = A_WLF_4LF';
 A_4LF_SLF = A_4LF_WLF * A_WLF_SLF;
 R_4LF_SLF = A_4LF_SLF(1:3,1:3);

256

 % Left Rear
 [alpha_1,alpha_2,alpha_3] = HT_2_RPY(A_U_4LR);
 A_WLR_4LR = roty(alpha_2)*rotz(alpha_3)*rotx(alpha_1); % Wheel Universal frame
 A_WLR_SLR = roty(beta_SLR_ys(p)) * rotz(beta_SLR_zs(p)); % Surface Frame
 A_4LR_WLR = A_WLR_4LR';
 A_4LR_SLR = A_4LR_WLR * A_WLR_SLR;
 R_4LR_SLR = A_4LR_SLR(1:3,1:3);

 R4RF_SRF = [R4RF_SRF R_4RF_SRF];
 R4RR_SRR = [R4RR_SRR R_4RR_SRR];
 R4LF_SLF = [R4LF_SLF R_4LF_SLF];
 R4LR_SLR = [R4LR_SLR R_4LR_SLR];

end

%__
% compute the force and moment exerted on the base OoR
[Force, Moment, Normal_Forces, towc, fc, fc_Moment, NF_moment,...
 Tow_CRight, Tow_CFront, Tow_CLeft, Tow_CRear, ...
 f_gravity, f_inertial, f_gravity_Moment, f_inertial_Moment] =...
 rne_base9(dh_dyn, [qm; qmd; qmdd], ...
 [q_RF; qd_RF; qdd_RF], [q_RR; qd_RR; qdd_RR], ...
 [q_LF; qd_LF; qdd_LF], [q_LR; qd_LR; qdd_LR], ...
 Flat_surface, theta_S_zs, theta_S_ys,...
 R4RF_SRF, R4RR_SRR, R4LF_SLF, R4LR_SLR, Touches);

% test for accuracy
for i=1:nr
 for j=1:nc
 if abs(Force(i,j)) < TOL
 Force(i,j) = 0;
 end

 if abs(Moment(i,j)) < TOL
 Moment(i,j) = 0;
 end

 if abs(Normal_Forces(i,j)) < TOL
 Normal_Forces(i,j) = 0;
 end

 if abs(fc(i,j)) < TOL
 fc(i,j) = 0;
 end

 if abs(towc(i,j)) < TOL
 towc(i,j) = 0;
 end

 if abs(fc_Moment(i,j)) < TOL
 fc_Moment(i,j) = 0;

257

 end

 if abs(NF_moment(i,j)) < TOL
 NF_moment(i,j) = 0;
 end

 if abs(Tow_CRight(i,j)) < TOL
 Tow_CRight(i,j) = 0;
 end

 if abs(Tow_CFront(i,j)) < TOL
 Tow_CFront(i,j) = 0;
 end

 if abs(Tow_CLeft(i,j)) < TOL
 Tow_CLeft(i,j) = 0;
 end

 if abs(Tow_CRear(i,j)) < TOL
 Tow_CRear(i,j) = 0;
 end

 if abs(f_gravity(i,j)) < TOL
 f_gravity(i,j) = 0;
 end

 if abs(f_inertial(i,j)) < TOL
 f_inertial(i,j) = 0;
 end

 if abs(f_gravity_Moment(i,j)) < TOL
 f_gravity_Moment(i,j) = 0;
 end

 if abs(f_inertial_Moment(i,j)) < TOL
 f_inertial_Moment(i,j) = 0;
 end

 end
end

Momentt = Moment;

Tow_CRight = Tow_CRight(2,:);
Tow_CFront = Tow_CFront(3,:);
Tow_CLeft = Tow_CLeft(2,:);
Tow_CRear = Tow_CRear(3,:);

258

Rne_base9.m

function [Force, Moment, Normal_Forces, Towc, Fc, Fc_Moment, NF_moment,...
 Tow_Critical_Right, Tow_Critical_Front, Tow_Critical_Left, Tow_Critical_Rear,...
 F_gravity, F_inertial, F_gravity_Moment, F_inertial_Moment] = ...
 rne(dh_dyn, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13)

 n = numrows(dh_dyn); % number of links in one manipulator
 np = numcols(a2) % number of time samples

 Q0 = a1(1:3,:);
 Q0d = a1(4:6,:);
 Q0dd = a1(7:9,:);

 Q_RF = a2(1:4,:);
 Qd_RF = a2(5:8,:);
 Qdd_RF = a2(9:12,:);

 Q_RR = a3(1:4,:);
 Qd_RR = a3(5:8,:);
 Qdd_RR = a3(9:12,:);

 Q_LF = a4(1:4,:);
 Qd_LF = a4(5:8,:);
 Qdd_LF = a4(9:12,:);

 Q_LR = a5(1:4,:);
 Qd_LR = a5(5:8,:);
 Qdd_LR = a5(9:12,:);

 Flat_surface = a6;

 theta_S_zu = a7;
 theta_S_yu = a8;

 R_Right_side = [a9; a10];
 R_Left_side = [a11; a12];

 Touching = a13;

 %______________ Initial Conditions ________________
 radius = dh_dyn(5,3);
 %g = 9.81; %acceleration gravity on earth surface (m/s^2).
 g = 3.63; %acceleration gravity on Mars surface (m/s^2).

 V = zeros(3, np);
 Vd = zeros(3, np);

 Vp = zeros(4, np);
 Vpd = zeros(4, np);

259

 for p=1:np,

 Vp(:,p) = rotz(Q0(2,p))*rotz(Q0(3,p))*rotz(Q0(1,p))*...
 [0; (radius*Qd_RF(4,p) - radius*Qd_LF(4,p))/2; 0; 1];
 Vpd(:,p) = rotz(Q0(2,p))*rotz(Q0(3,p))*rotz(Q0(1,p))*...
 [0; (radius*Qdd_RF(4,p) - radius*Qdd_LF(4,p))/2; 0; 1];
 end

 for p=1:np,

 V(:,p) = [0; 0; 0] + Vp(1:3,p);
 Vd(:,p) = [-g; 0; 0] + Vpd(1:3,p);
 end

% w = zeros(3,1);
 % wd = zeros(3,1);
 %___

 m = dh_dyn(:,6); % column vector of links' masses
 mass = m(1) + 2*m(2) + 2*m(3) + 4*m(4) + 4*m(5); % System total mass

 rc = dh_dyn(:,7:9)'; % matrix of COM data; row per link

 Im = [];
 for j=1:n,
 I = [dh_dyn(j,10) dh_dyn(j,13) dh_dyn(j,15); ...
 dh_dyn(j,13) dh_dyn(j,11) dh_dyn(j,14); ...
 dh_dyn(j,15) dh_dyn(j,14) dh_dyn(j,12)];
 Im = [Im I];
 end

 Force_Moment_NOM = [];

 f_NOM = [];
 tow_NOM = [];

 A_NOM = [];
 R_NOM = [];
 pstar_NOM = [];

for NOM=1:4,

 if NOM == 1,
 Q = Q_RF;
 Qd = Qd_RF;
 Qdd = Qdd_RF;
 sign = 1;
 elseif NOM == 2,
 Q = Q_RR;
 Qd = Qd_RR;
 Qdd = Qdd_RR;
 sign = 1;

260

 elseif NOM == 3,
 Q = Q_LF;
 Qd = Qd_LF;
 Qdd = Qdd_LF;
 sign = -1;
 elseif NOM == 4,
 Q = Q_LR;
 Qd = Qd_LR;
 Qdd = Qdd_LR;
 sign = -1;
 end

 f_p = [];
 tow_p = [];

 A_p = [];
 R_p = [];
 pstar_p = [];

 for p=1:np,

 q0 = Q0(:,p);
 q0d = Q0d(:,p);
 q0dd= Q0dd(:,p);

 q = Q(:,p);
 qd = Qd(:,p);
 qdd = Qdd(:,p);

 v = V(:,p);
 vd = Vd(:,p);

 w = q0d;
 wd = q0dd;

 fm = [];
 towm = [];

 pstarm = [];
 Am = [];
 Rm = [];

 theta = q;
 d = dh_dyn(2:n,2);
 a = dh_dyn(2:n,3);
 alpha = dh_dyn(2:n,4);

 %___

 A_U_0R = roty(q0(2)) * rotz(q0(3)) * rotx(q0(1));
 R_U_0R = A_U_0R(1:3,1:3);
 R_0R_0L= [1 0 0;0 -1 0;0 0 -1];

261

 A_0R_0L= [1 0 0 0;0 -1 0 0;0 0 -1 0;0 0 0 1];

 if (NOM == 1 || NOM == 2)
 Rm = [Rm R_U_0R];
 Am = [Am A_U_0R];
 elseif (NOM == 3 || NOM == 4)
 R_U_0L = R_U_0R * R_0R_0L;
 A_U_0L = A_U_0R * A_0R_0L;
 Rm = [Rm R_U_0L];
 Am = [Am A_U_0L];
 end

 p_U_0 = [0; 0; 0];
 pstarm = [pstarm p_U_0];
 %___

 qd=[q0d [0 0 0 0; ...
 0 0 0 0; ...
 qd']];

 qdd=[q0dd [0 0 0 0; ...
 0 0 0 0; ...
 qdd']];
 %___
 % theta_4 manipulated in contact point of wheel with ground
 theta(4) = -theta(1) - theta(3) + sign*(theta_S_zu(NOM, p) - q0(3)) ;
 theta(3) = theta(3) + pi;

 for j=1:n-1,

 A = DHtransformation(theta(j), d(j), a(j), alpha(j));
 pstar = [a(j); d(j)*sin(alpha(j)); d(j)*cos(alpha(j))];

 Am = [Am A];
 R = A(1:3,1:3);
 Rm = [Rm R];

 pstarm = [pstarm pstar];
 end

 %--

 %
 % the forward recursion
 %

 for j=1:n,

 R = Rm(:,3*j-2:3*j)';
 pstar = pstarm(:,j);
 I = Im(:,3*j-2:3*j);

262

 wd = R*(wd + qdd(:,j) + cross(w,qd(:,j)));
 w = R*(w + qd(:,j));

 vd = cross(wd,pstar) + cross(w, cross(w,pstar)) + R*vd;

 vd_c = cross(wd,rc(:,j)) + cross(w,cross(w,rc(:,j))) + vd;

 f = m(j)*vd_c;
 tow = I*wd + cross(w,I*w);
 fm = [fm f];
 towm = [towm tow];

 end

 f_p = [f_p fm];
 tow_p = [tow_p towm];

 R_p = [R_p Rm];
 A_p = [A_p Am];
 pstar_p = [pstar_p pstarm];

 end

 pstar_NOM = [pstar_NOM; pstar_p];
 A_NOM = [A_NOM; A_p];
 R_NOM = [R_NOM; R_p];
 f_NOM = [f_NOM; f_p];
 tow_NOM = [tow_NOM; tow_p];

end
f_NOM;

%________ Normal Forces __________

Fext_SRF_SRF = [];
Fext_SRR_SRR = [];
Fext_SLF_SLF = [];
Fext_SLR_SLR = [];

towc_sys = []; fc_sys = []; fc_Moment_sys= []; NF_moment_sys = [];
tow_CRight_sys = []; tow_CFront_sys = []; tow_CLeft_sys = []; tow_CRear_sys = [];
f_gravity_sys = []; f_inertial_sys = [];
f_gravity_Moment_sys = []; f_inertial_Moment_sys = [];

for p=1:np,

 %meu_s = 0.6;
 %meu_k = 0.15;

 q0 = Q0(:,p);
 nc = 4;
 Touch = Touching(:,p);

263

 [Fn_SRF, Fn_SRR, Fn_SLF, Fn_SLR, towc, fc, fc_Moment, NF_moment,...
 tow_Critical_Right, tow_Critical_Front, tow_Critical_Left, tow_Critical_Rear,...
 f_gravity, f_inertial, f_gravity_Moment, f_inertial_Moment] =...
 Inertial11(f_NOM(:,5*p-4:5*p), tow_NOM(:,5*p-4:5*p),...
 R_NOM(:,15*p-14:15*p), A_NOM(:,20*p-19:20*p),...
 pstarm, dh_dyn, theta_S_zu(:,p), theta_S_yu(:,p),...
 Touch, m, q0(2),q0(3));

 Ff_SRF = 0;%meu_s * Fn_SRF; %
 Ff_SRR = 0;%meu_s * Fn_SRR; % Static frictional force
 Ff_SLF = 0;%meu_s * Fn_SLF; %
 Ff_SLR = 0;%meu_s * Fn_SLR; %

 %Ff_SRF = meu_k * Fn_SRF; %
 %Ff_SRR = meu_k * Fn_SRR; % Dynamic frictional force
 %Ff_SLF = meu_k * Fn_SLF; %
 %Ff_SLR = meu_k * Fn_SLR; %

 %_______Generalized ground input forces and moments________

 FSRF_SRF = [Fn_SRF -Ff_SRF 0]'; %
 FSRR_SRR = [Fn_SRR -Ff_SRR 0]'; % External resultant force
 FSLF_SLF = [Fn_SLF -Ff_SLF 0]'; %
 FSLR_SLR = [Fn_SLR -Ff_SLR 0]'; %

 TSRF_SRF = [0 0 0]'; %
 TSRR_SRR = [0 0 0]'; % External resultant moment
 TSLF_SLF = [0 0 0]'; %
 TSLR_SLR = [0 0 0]'; %

 Fext_SRF_SRF = [Fext_SRF_SRF [FSRF_SRF; TSRF_SRF]];
 Fext_SRR_SRR = [Fext_SRR_SRR [FSRR_SRR; TSRR_SRR]];
 Fext_SLF_SLF = [Fext_SLF_SLF [FSLF_SLF; TSLF_SLF]];
 Fext_SLR_SLR = [Fext_SLR_SLR [FSLR_SLR; TSLR_SLR]];

 towc_sys = [towc_sys towc];
 fc_sys = [fc_sys fc];
 fc_Moment_sys = [fc_Moment_sys fc_Moment];
 NF_moment_sys = [NF_moment_sys NF_moment];

 tow_CRight_sys = [tow_CRight_sys tow_Critical_Right];
 tow_CFront_sys = [tow_CFront_sys tow_Critical_Front];
 tow_CLeft_sys = [tow_CLeft_sys tow_Critical_Left];
 tow_CRear_sys = [tow_CRear_sys tow_Critical_Rear];

 f_gravity_sys = [f_gravity_sys f_gravity];
 f_inertial_sys = [f_inertial_sys f_inertial];
 f_gravity_Moment_sys = [f_gravity_Moment_sys f_gravity_Moment];
 f_inertial_Moment_sys = [f_inertial_Moment_sys f_inertial_Moment];

264

end

Towc = towc_sys;
Fc = fc_sys;
Fc_Moment = fc_Moment_sys;
NF_moment = NF_moment_sys;

Tow_Critical_Right = tow_CRight_sys;
Tow_Critical_Front = tow_CFront_sys;
Tow_Critical_Left = tow_CLeft_sys;
Tow_Critical_Rear = tow_CRear_sys;

F_gravity = f_gravity_sys;
F_inertial = f_inertial_sys;
F_gravity_Moment = f_gravity_Moment_sys;
F_inertial_Moment = f_inertial_Moment_sys;

%__

Force_Moment_nps = [];

for s =1:2 % Right/Left side

 if s == 1,
 pstar_s = pstar_NOM(1:6,:);
 R_s = R_NOM(1:6,:);
 f_s = f_NOM(1:6,:);
 tow_s = tow_NOM(1:6,:);
 Fext_s = [Fext_SRF_SRF; Fext_SRR_SRR];
 R_s_Surface = R_Right_side;

 elseif s == 2,
 pstar_s = pstar_NOM(7:12,:);
 R_s = R_NOM(7:12,:);
 f_s = f_NOM(7:12,:);
 tow_s = tow_NOM(7:12,:);
 Fext_s = [Fext_SLF_SLF; Fext_SLR_SLR];
 R_s_Surface = R_Left_side;
 end

 Force_Moment_NOM = [];

 for NOM = 1:2, % Front/Rear Leg

 if NOM == 1,
 pstar = pstar_s(1:3,:);
 Rot = R_s(1:3,:);
 f = f_s(1:3,:);
 tow = tow_s(1:3,:);
 Fext = Fext_s(1:6,:);

265

 R_Surface = R_s_Surface(1:3,:);

 elseif NOM ==2,
 pstar = pstar_s(4:6,:);
 Rot = R_s(4:6,:);
 f = f_s(4:6,:);
 tow = tow_s(4:6,:);
 Fext = Fext_s(7:12,:);
 R_Surface = R_s_Surface(4:6,:);

 end

 Force_Moment_np = [];

 for p=1:np,

 R_4_S = R_Surface(:,3*p-2:3*p);

 rm = pstar(:,5*p-4:5*p);
 Rm = Rot(:,15*p-14:15*p);
 fm = f(:,5*p-4:5*p);
 towm = tow(:,5*p-4:5*p);
 F = Fext(1:3,p); % force/moments at end of end-effector
 T = Fext(4:6,p);

 Moment_n =[];
 Force_n =[];

 for j =n:-1:3

 r = rm(:,j);

 if j == n,
 R = R_4_S;
 else
 R = Rm(:,3*j+1:3*j+3);
 end

 if (j == 5) || (j == 4) || ((j==3)&&(NOM == 1))

 T = R*(T + cross(R'*r,F)) + cross(r+rc(:,j),fm(:,j)) + towm(:,j);
 F = R*F + fm(:,j);

 elseif (j == 3)&&(NOM == 2),

 T = R*(T + cross(R'*r,F));
 F = R*F;

 end

 Moment_n = [Moment_n T];
 Force_n = [Force_n F];

266

 end
 Force_Moment_np = [Force_Moment_np [Force_n; Moment_n]];
 end

 Force_Moment_NOM = [Force_Moment_NOM; Force_Moment_np];

 end

 %____Conjunctional joint____
 for p=1:np,
 Force_Moment_NOM(1:6,3*p) = Force_Moment_NOM(1:6,3*p) + Force_Moment_NOM(7:12,3*p);
 end

 %Force_Moment_NOM

 Force_Moment_NOM_s = Force_Moment_NOM(1:6,:);

 %___________________________

 pstar = pstar_s(1:3,:);
 Rot = R_s(1:3,:);
 f = f_s(1:3,:);
 tow = tow_s(1:3,:);

 Moment_ns = [];
 Force_ns = [];

 for p = 1:np,

 Rm = Rot(:,15*p-14:15*p);
 rm = pstar(:,5*p-4:5*p);
 fm = f(:,5*p-4:5*p);
 towm = tow(:,5*p-4:5*p);

 F = Force_Moment_NOM_s(1:3,3*p);
 T = Force_Moment_NOM_s(4:6,3*p);

 j = 2;
 r = rm(:,j);
 R = Rm(:,3*j+1:3*j+3);

 T = R*(T + cross(R'*r,F)) + cross(r+rc(:,j),fm(:,j)) + towm(:,j);
 F = R*F + fm(:,j);

 Moment_ns = [Moment_ns T];
 Force_ns = [Force_ns F];

 end

 Force_Moment_nps = [Force_Moment_nps; [Force_ns; Moment_ns]];

267

end

F1R_1R = Force_Moment_nps(1:3,:);
T1R_1R = Force_Moment_nps(4:6,:);

F1L_1L = Force_Moment_nps(7:9,:);
T1L_1L = Force_Moment_nps(10:12,:);

f0R_0R = f_NOM(1:3,:);
tow0R_0R = tow_NOM(1:3,:);

R0R_0L = [1 0 0;0 -1 0;0 0 -1];
Rot_R = R_NOM(1:3,:);
Rot_L = R_NOM(7:9,:);

pstar_R = pstar_NOM(1:3,:);

Moment_ns = [];
Force_ns = [];

for p = 1: np,

 Rm_R = Rot_R(:,15*p-14:15*p);
 Rm_L = Rot_L(:,15*p-14:15*p);

 rm = pstar_R(:,5*p-4:5*p);
 fm = f0R_0R(:,5*p-4:5*p);
 towm = tow0R_0R(:,5*p-4:5*p);

 TR = T1R_1R(:,p);
 FR = F1R_1R(:,p);

 TL = T1L_1L(:,p);
 FL = F1L_1L(:,p);

 j=1;

 r = rm(:,j);
 R_R = Rm_R(:,3*j+1:3*j+3);
 R_L = Rm_L(:,3*j+1:3*j+3);

 T = R_R*(TR + cross(R_R'*r,FR)) + cross(r+rc(:,j),fm(:,j)) + towm(:,j)+...
 R0R_0L*R_L*(TL + cross(R_L'*r,FL));
 F = R_R*FR + fm(:,j) + R0R_0L * R_L*FL;

 Moment_ns = [Moment_ns T];
 Force_ns = [Force_ns F];
end

Force_Moment_np0 = [Force_ns; Moment_ns];

268

 for p = 1:np,
 R_U_0 = R_NOM(1:3,15*p-14:15*p-12);

 F(1:3,p) = R_U_0 * Force_Moment_np0(1:3, p);
 T(1:3,p) = R_U_0 * Force_Moment_np0(4:6, p);
 end

 Force = F;
 Moment = T;

 Normal_Forces = [Fext_SRF_SRF(1,:); Fext_SRR_SRR(1,:);...
 Fext_SLF_SLF(1,:); Fext_SLR_SLR(1,:)];

Inertial11

function [FnSRF, FnSRR, FnSLF, FnSLR, towc, fc, fc_Moment, Normal_Forces_moments,...
 tow_Critical_Right, tow_Critical_Front, tow_Critical_Left, tow_Critical_Rear,...
 f_gravity, f_inertial, f_gravity_Moment, f_inertial_Moment] =...
 Inertial11(f, tow, R, A, pstarm, dh_dyn, theta_S_zu, theta_S_yu, Touch, m, Roll, Pitch)

touchRF = Touch(1);
touchRR = Touch(2);
touchLF = Touch(3);
touchLR = Touch(4);

m0 = m(1); m1 = m(2); m2 = m(3); m3 = m(4); m4 = m(5);
Mass = m0 + 2*(m1 + m2) + 4*(m3 + m4);

TOL = 0.00001; % tolerance value

g = 3.63;
meu=0;

f0R = f(1:3,1);
f1R = f(1:3,2);
f2R = f(1:3,3);
f3RF = f(1:3,4);
f4RF = f(1:3,5);
f3RR = f(4:6,4);
f4RR = f(4:6,5);

f0L = f(7:9,1); f1L = f(7:9,2); f2L = f(7:9,3);
f3LF = f(7:9,4); f4LF = f(7:9,5);
f3LR = f(10:12,4); f4LR = f(10:12,5);

tow0R = tow(1:3,1); tow1R = tow(1:3,2); tow2R = tow(1:3,3);
tow3RF = tow(1:3,4); tow4RF = tow(1:3,5);
tow3RR = tow(4:6,4); tow4RR = tow(4:6,5);

tow0L = tow(7:9,1); tow1L = tow(7:9,2); tow2L = tow(7:9,3);

269

tow3LF = tow(7:9,4); tow4LF = tow(7:9,5);
tow3LR = tow(10:12,4); tow4LR = tow(10:12,5);

tow4RF;
tow4RR;
tow4LF;
tow4LR;

r0 = pstarm(:, 1);
r1 = pstarm(:, 2);
r2 = pstarm(:, 3);
r3 = pstarm(:, 4);
r4 = pstarm(:, 5);

rc = dh_dyn(:,7:9)';

rc0 = rc(:,1);
rc1 = rc(:,2);
rc2 = rc(:,3);
rc3 = rc(:,4);
rc4 = rc(:,5);

AU_4RF = A(1:4,1:4) * A(1:4,5:8) * A(1:4,9:12) * A(1:4,13:16) *A(1:4,17:20);
AU_3RF = A(1:4,1:4) * A(1:4,5:8) * A(1:4,9:12) * A(1:4,13:16);
AU_2R = A(1:4,1:4) * A(1:4,5:8) * A(1:4,9:12);
AU_1R = A(1:4,1:4) * A(1:4,5:8);
AU_0R = A(1:4,1:4);

rU_4RF = AU_4RF(1:3,4);
rU_3RF = AU_3RF(1:3,4);
rU_2R = AU_2R(1:3,4);
rU_1R = AU_1R(1:3,4);
rU_0R = AU_0R(1:3,4);

rcU_4RF = rU_3RF; % - AU_4RF(1:3,1:3)*rc4 ;
rcU_3RF = rU_2R - AU_3RF(1:3,1:3)*rc3;
rcU_2R = rU_1R - AU_2R(1:3,1:3)*rc2;
rcU_1R = rU_0R - AU_1R(1:3,1:3)*rc1;
rcU_0R = r0;

AU_4RR = A(5:8,1:4) * A(5:8,5:8) * A(5:8,9:12) * A(5:8,13:16) *A(5:8,17:20);
AU_3RR = A(5:8,1:4) * A(5:8,5:8) * A(5:8,9:12) * A(5:8,13:16);

rU_4RR = AU_4RR(1:3,4);
rU_3RR = AU_3RR(1:3,4);

rcU_4RR = rU_3RR;% - AU_4RR(1:3,1:3)*rc4;
rcU_3RR = rU_2R - AU_3RR(1:3,1:3)*rc3;

270

AU_4LF = A(9:12,1:4) * A(9:12,5:8) * A(9:12,9:12) * A(9:12,13:16) *A(9:12,17:20);
AU_3LF = A(9:12,1:4) * A(9:12,5:8) * A(9:12,9:12) * A(9:12,13:16);
AU_2L = A(9:12,1:4) * A(9:12,5:8) * A(9:12,9:12);
AU_1L = A(9:12,1:4) * A(9:12,5:8);
AU_0L = A(9:12,1:4);

rU_4LF = AU_4LF(1:3,4);
rU_3LF = AU_3LF(1:3,4);
rU_2L = AU_2L(1:3,4);
rU_1L = AU_1L(1:3,4);
rU_0L = AU_0L(1:3,4);

rcU_4LF = rU_3LF;% - AU_4LF(1:3,1:3)*rc4;
rcU_3LF = rU_2L - AU_3LF(1:3,1:3)*rc3;
rcU_2L = rU_1L - AU_2L(1:3,1:3)*rc2;
rcU_1L = rU_0R - AU_1L(1:3,1:3)*rc1;

AU_4LR = A(13:16,1:4) * A(13:16,5:8) * A(13:16,9:12) * A(13:16,13:16) * A(13:16,17:20);
AU_3LR = A(13:16,1:4) * A(13:16,5:8) * A(13:16,9:12) * A(13:16,13:16);

rU_4LR = AU_4LR(1:3,4);
rU_3LR = AU_3LR(1:3,4);

rcU_4LR = rU_3LR; % - AU_4LR(1:3,1:3)*rc4;
rcU_3LR = rU_2L - AU_3LR(1:3,1:3)*rc3;

%__
% Right Front
 beta_SRF_zu = theta_S_zu(1);
 beta_SRF_yu = theta_S_yu(1);
 [alpha_1,alpha_2,alpha_3] = HT_2_RPY(AU_4RF);
 AWRF_4RF = roty(alpha_2)*rotz(alpha_3)*rotx(alpha_1); % Wheel Universal frame
 AWRF_SRF = roty(beta_SRF_yu) * rotz(beta_SRF_zu); % Surface Frame
 A4RF_WRF = AWRF_4RF';
 A4RF_SRF = A4RF_WRF * AWRF_SRF;
 AU_SRF = AU_4RF * A4RF_SRF;

% Right Rear
 beta_SRR_zu = theta_S_zu(2);
 beta_SRR_yu = theta_S_yu(2);
 [alpha_1,alpha_2,alpha_3] = HT_2_RPY(AU_4RR);
 AWRR_4RR = roty(alpha_2)*rotz(alpha_3)*rotx(alpha_1); % Wheel Universal frame
 AWRR_SRR = roty(beta_SRR_yu) * rotz(beta_SRR_zu); % Surface Frame
 A4RR_WRR = AWRR_4RR';
 A4RR_SRR = A4RR_WRR * AWRR_SRR;
 AU_SRR = AU_4RR * A4RR_SRR;

% Left Front
 beta_SLF_zu = theta_S_zu(3);
 beta_SLF_yu = theta_S_yu(3);
 [alpha_1,alpha_2,alpha_3] = HT_2_RPY(AU_4LF);
 AWLF_4LF = roty(alpha_2)*rotz(alpha_3)*rotx(alpha_1); % Wheel Universal frame

271

 AWLF_SLF = roty(beta_SLF_yu) * rotz(beta_SLF_zu); % Surface Frame
 A4LF_WLF = AWLF_4LF';
 A4LF_SLF = A4LF_WLF * AWLF_SLF;
 AU_SLF = AU_4LF * A4LF_SLF;

% Left Rear
 beta_SLR_zu = theta_S_zu(4);
 beta_SLR_yu = theta_S_yu(4);
 [alpha_1,alpha_2,alpha_3] = HT_2_RPY(AU_4LR);
 AWLR_4LR = roty(alpha_2)*rotz(alpha_3)*rotx(alpha_1); % Wheel Universal frame
 AWLR_SLR = roty(beta_SLR_yu) * rotz(beta_SLR_zu); % Surface Frame
 A4LR_WLR = AWLR_4LR';
 A4LR_SLR = A4LR_WLR * AWLR_SLR;
 AU_SLR = AU_4LR * A4LR_SLR;

%__

inv(AU_0R(1:3,1:3))*AU_SRF(1:3,1:3);
inv(AU_0R(1:3,1:3))*AU_SRR(1:3,1:3);
inv(AU_0R(1:3,1:3))*AU_SLF(1:3,1:3);
inv(AU_0R(1:3,1:3))*AU_SLR(1:3,1:3);

AU_SRF(1:3,1:3);
AU_SRR(1:3,1:3);
AU_SLF(1:3,1:3);
AU_SLR(1:3,1:3);

H1 = AU_SRF(1:3,1:3)*[1 -meu 0]';
H2 = AU_SRR(1:3,1:3)*[1 -meu 0]';
H3 = AU_SLF(1:3,1:3)*[1 -meu 0]';
H4 = AU_SLR(1:3,1:3)*[1 -meu 0]';

System_Force_0R = inv(AU_0R(1:3,1:3))*...
 (AU_4RF(1:3,1:3)*f4RR + AU_3RF(1:3,1:3)*f3RF + AU_4RR(1:3,1:3)*f4RR +
AU_3RR(1:3,1:3)*f3RR + ...
 AU_2R(1:3,1:3)*f2R + AU_1R(1:3,1:3)*f1R + AU_4LF(1:3,1:3)*f4LF + AU_3LF(1:3,1:3)*f3LF + ...
 AU_4LR(1:3,1:3)*f4LR + AU_3LR(1:3,1:3)*f3LR + AU_2L(1:3,1:3)*f2L + AU_1L(1:3,1:3)*f1L + ...
 AU_0R(1:3,1:3)*f0R);

System_Force_U = AU_4RF(1:3,1:3)*f4RR + AU_3RF(1:3,1:3)*f3RF + AU_4RR(1:3,1:3)*f4RR +
AU_3RR(1:3,1:3)*f3RR + ...
 AU_2R(1:3,1:3)*f2R + AU_1R(1:3,1:3)*f1R + AU_4LF(1:3,1:3)*f4LF + AU_3LF(1:3,1:3)*f3LF + ...
 AU_4LR(1:3,1:3)*f4LR + AU_3LR(1:3,1:3)*f3LR + AU_2L(1:3,1:3)*f2L + AU_1L(1:3,1:3)*f1L + ...
 AU_0R(1:3,1:3)*f0R;

 A1 = touchRF * cross(rU_4RF, AU_SRF(1:3,1:3)*[1 -meu 0]');
 A2 = touchRR * cross(rU_4RR, AU_SRR(1:3,1:3)*[1 -meu 0]');
 A3 = touchLF * cross(rU_4LF, AU_SLF(1:3,1:3)*[1 -meu 0]');
 A4 = touchLR * cross(rU_4LR, AU_SLR(1:3,1:3)*[1 -meu 0]');

 M_U = cross(rcU_4RF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU_3RF(1:3,1:3)*f3RF)+...
 cross(rcU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU_3RR(1:3,1:3)*f3RR)+...

272

 cross(rcU_2R, AU_2R(1:3,1:3)*f2R) + cross(rcU_1R, AU_1R(1:3,1:3)*f1R)+...
 cross(rcU_0R, AU_0R(1:3,1:3)*f0R) + cross(rcU_1L, AU_1L(1:3,1:3)*f1L)+...
 cross(rcU_2L, AU_2L(1:3,1:3)*f2L) + cross(rcU_3LF, AU_3LF(1:3,1:3)*f3LF)+...
 cross(rcU_4LF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU_3LR(1:3,1:3)*f3LR)+...
 cross(rcU_4LR, AU_4LR(1:3,1:3)*f4LR) + ...
 AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + AU_4RR(1:3,1:3)*tow4RR +
AU_3RR(1:3,1:3)*tow3RR+...
 AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + AU_4LR(1:3,1:3)*tow4LR +
AU_3LR(1:3,1:3)*tow3LR+...
 AU_2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*tow1R + AU_2L(1:3,1:3)*tow2L +
AU_1L(1:3,1:3)*tow1L +...
 AU_0R(1:3,1:3)*tow0R;

 rU_4RR - rU_4RF;
 rU_4LF - rU_4RF;
 rU_4LR - rU_4RF;

 B1 = touchRR * cross(rU_4RR - rU_4RF, AU_SRR(1:3,1:3)*[1 -meu 0]');
 B2 = touchLF * cross(rU_4LF - rU_4RF, AU_SLF(1:3,1:3)*[1 -meu 0]');
 B3 = touchLR * cross(rU_4LR - rU_4RF, AU_SLR(1:3,1:3)*[1 -meu 0]');

 M1 = cross(rcU_4RF - rU_4RF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF - rU_4RF,
AU_3RF(1:3,1:3)*f3RF)+...
 cross(rcU_4RR - rU_4RF, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR - rU_4RF,
AU_3RR(1:3,1:3)*f3RR)+...
 cross(rcU_2R - rU_4RF, AU_2R(1:3,1:3)*f2R) + cross(rcU_1R - rU_4RF,
AU_1R(1:3,1:3)*f1R)+...
 cross(rcU_0R - rU_4RF, AU_0R(1:3,1:3)*f0R) + cross(rcU_1L - rU_4RF,
AU_1L(1:3,1:3)*f1L)+...
 cross(rcU_2L - rU_4RF, AU_2L(1:3,1:3)*f2L) + cross(rcU_3LF - rU_4RF,
AU_3LF(1:3,1:3)*f3LF)+...
 cross(rcU_4LF - rU_4RF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR - rU_4RF,
AU_3LR(1:3,1:3)*f3LR)+...
 cross(rcU_4LR - rU_4RF, AU_4LR(1:3,1:3)*f4LR) + ...
 AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + AU_4RR(1:3,1:3)*tow4RR +
AU_3RR(1:3,1:3)*tow3RR+...
 AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + AU_4LR(1:3,1:3)*tow4LR +
AU_3LR(1:3,1:3)*tow3LR+...
 AU_2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*tow1R + AU_2L(1:3,1:3)*tow2L +
AU_1L(1:3,1:3)*tow1L +...
 AU_0R(1:3,1:3)*tow0R;

 C1 = touchRF * cross(rU_4RF - rU_4RR, AU_SRF(1:3,1:3)*[1 -meu 0]');
 C2 = touchLF * cross(rU_4LF - rU_4RR, AU_SLF(1:3,1:3)*[1 -meu 0]');
 C3 = touchLR * cross(rU_4LR - rU_4RR, AU_SLR(1:3,1:3)*[1 -meu 0]');

 M2 = cross(rcU_4RR - rU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR - rU_4RR,
AU_3RR(1:3,1:3)*f3RR)+...
 cross(rcU_4RF - rU_4RR, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF - rU_4RR,
AU_3RR(1:3,1:3)*f3RR)+...
 cross(rcU_2R - rU_4RR, AU_2R(1:3,1:3)*f2R) + cross(rcU_1R - rU_4RR,
AU_1R(1:3,1:3)*f1R)+...

273

 cross(rcU_0R - rU_4RR, AU_0R(1:3,1:3)*f0R) + cross(rcU_1L - rU_4RR,
AU_1L(1:3,1:3)*f1L)+...
 cross(rcU_2L - rU_4RR, AU_2L(1:3,1:3)*f2L) + cross(rcU_3LF - rU_4RR,
AU_3LF(1:3,1:3)*f3LF)+...
 cross(rcU_4LF - rU_4RR, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR - rU_4RR,
AU_3LR(1:3,1:3)*f3LR)+...
 cross(rcU_4LR - rU_4RR, AU_4LR(1:3,1:3)*f4LR) +...
 AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + AU_4RR(1:3,1:3)*tow4RR +
AU_3RR(1:3,1:3)*tow3RR+...
 AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + AU_4LR(1:3,1:3)*tow4LR +
AU_3LR(1:3,1:3)*tow3LR+...
 AU_2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*tow1R + AU_2L(1:3,1:3)*tow2L +
AU_1L(1:3,1:3)*tow1L +...
 AU_0R(1:3,1:3)*tow0R;

 D1 = touchRF * cross(rU_4RF - rU_4LF, AU_SRF(1:3,1:3)*[1 -meu 0]');
 D2 = touchRR * cross(rU_4RR - rU_4LF, AU_SRR(1:3,1:3)*[1 -meu 0]');
 D3 = touchLR * cross(rU_4LR - rU_4LF, AU_SLR(1:3,1:3)*[1 -meu 0]');

 M3 = cross(rcU_4RR - rU_4LF, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR - rU_4LF,
AU_3RR(1:3,1:3)*f3RR)+...
 cross(rcU_4RF - rU_4LF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF - rU_4LF,
AU_3RR(1:3,1:3)*f3RR)+...
 cross(rcU_2R - rU_4LF, AU_2R(1:3,1:3)*f2R) + cross(rcU_1R - rU_4LF,
AU_1R(1:3,1:3)*f1R)+...
 cross(rcU_0R - rU_4LF, AU_0R(1:3,1:3)*f0R) + cross(rcU_1L - rU_4LF,
AU_1L(1:3,1:3)*f1L)+...
 cross(rcU_2L - rU_4LF, AU_2L(1:3,1:3)*f2L) + cross(rcU_3LF - rU_4LF,
AU_3LF(1:3,1:3)*f3LF)+...
 cross(rcU_4LF - rU_4LF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR - rU_4LF,
AU_3LR(1:3,1:3)*f3LR)+...
 cross(rcU_4LR - rU_4LF, AU_4LR(1:3,1:3)*f4LR) + ...
 AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + AU_4RR(1:3,1:3)*tow4RR +
AU_3RR(1:3,1:3)*tow3RR+ ...
 AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + AU_4LR(1:3,1:3)*tow4LR +
AU_3LR(1:3,1:3)*tow3LR+...
 AU_2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*tow1R + AU_2L(1:3,1:3)*tow2L +
AU_1L(1:3,1:3)*tow1L +...
 AU_0R(1:3,1:3)*tow0R;

 E1 = touchRF * cross(rU_4RF - rU_4LR, AU_SRF(1:3,1:3)*[1 -meu 0]');
 E2 = touchRR * cross(rU_4RR - rU_4LR, AU_SRR(1:3,1:3)*[1 -meu 0]');
 E3 = touchLF * cross(rU_4LF - rU_4LR, AU_SLF(1:3,1:3)*[1 -meu 0]');

 M4 = cross(rcU_4RR - rU_4LR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR - rU_4LR,
AU_3RR(1:3,1:3)*f3RR)+...
 cross(rcU_4RF - rU_4LR, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF - rU_4LR,
AU_3RR(1:3,1:3)*f3RR)+...
 cross(rcU_2R - rU_4LR, AU_2R(1:3,1:3)*f2R) + cross(rcU_1R - rU_4LR,
AU_1R(1:3,1:3)*f1R)+...
 cross(rcU_0R - rU_4LR, AU_0R(1:3,1:3)*f0R) + cross(rcU_1L - rU_4LR,
AU_1L(1:3,1:3)*f1L)+...

274

 cross(rcU_2L - rU_4LR, AU_2L(1:3,1:3)*f2L) + cross(rcU_3LF - rU_4LR,
AU_3LF(1:3,1:3)*f3LF)+...
 cross(rcU_4LF - rU_4LR, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR - rU_4LR,
AU_3LR(1:3,1:3)*f3LR)+...
 cross(rcU_4LR - rU_4LR, AU_4LR(1:3,1:3)*f4LR) +...
 AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + AU_4RR(1:3,1:3)*tow4RR +
AU_3RR(1:3,1:3)*tow3RR+...
 AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + AU_4LR(1:3,1:3)*tow4LR +
AU_3LR(1:3,1:3)*tow3LR+...
 AU_2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*tow1R + AU_2L(1:3,1:3)*tow2L +
AU_1L(1:3,1:3)*tow1L +...
 AU_0R(1:3,1:3)*tow0R;

%__
% Right Legs & Left Legs are in contact with ground
%

if (touchRF == 1 && touchRR == 1)&&(touchLF == 1 && touchLR == 1)

 if (Roll ~= 0 && Pitch == 0)

 Fn_SRF = -M3(2)/(D1(2)+D2(2));
 Fn_SRR = Fn_SRF;
 Fn_SLF = -M1(2)/(B2(2)+B3(2));
 Fn_SLR = Fn_SLF;
 xxx = Fn_SRF + Fn_SRR + Fn_SLF + Fn_SLR;

 elseif (Roll == 0 && Pitch ~= 0) || (Roll == 0 && Pitch == 0)

 Fn_SRF = -M2(3)/(C1(3)+C2(3));
 Fn_SRR = -M1(3)/(B1(3)+B3(3));
 Fn_SLF = Fn_SRF;
 Fn_SLR = Fn_SRR;

 xxx = Fn_SRF + Fn_SRR + Fn_SLF + Fn_SLR;
 end
end

%__
% Right Legs in contact with ground & Left Legs without contact
%
if (touchRF == 1 && touchRR == 1) && (touchLF == 0 && touchLR == 0)

 Coefficient = [0 B1(3);...
 C1(3) 0];

 b = [-M1(3) -M2(3)]';

 x = inv(Coefficient)*b;

 Fn_SRF = x(1);

275

 Fn_SRR = x(2);
 Fn_SLF = 0;
 Fn_SLR = 0;
end

%__
% Left Legs in contact with ground & Right Legs without contact
%
if (touchRF == 0 && touchRR == 0) && (touchLF == 1 && touchLR == 1)

 Coefficient = [0 D3(3);...
 E3(3) 0];

 b = [-M3(3) -M4(3)]';

 x = inv(Coefficient)*b;

 Fn_SRF = 0;
 Fn_SRR = 0;
 Fn_SLF = x(1);
 Fn_SLR = x(2);
end

%__
% Right Legs in contact with ground & Either Left Front or Rear Leg without contact
%
if (touchRF == 1 && touchRR == 1) &&...
 ((touchLF == 1 && touchLR == 0)||(touchLF == 0 && touchLR == 1))

 Coefficient = [0 B1(2) B2(2) B3(2);...
 0 B1(3) B2(3) B3(3);...
 C1(3) 0 C2(3) C3(3);...
 H1(1) H2(1) H3(1) H4(1)];

 b = [-M1(2) -M1(3) -M2(3) -System_Force_U(1)]';

 x = inv(Coefficient)*b;

 Fn_SRF = x(1);
 Fn_SRR = x(2);
 Fn_SLF = x(3);
 Fn_SLR = x(4);
%__
% Either Right Front or Rear Leg in contact with ground & Left Legs with contact
%
elseif ((touchRF == 0 && touchRR == 1)||(touchRF == 1 && touchRR == 0))...
 && (touchLF == 1 && touchLR == 1)

 Coefficient = [D1(2) D2(2) 0 D3(2);...
 D1(3) D2(3) 0 D3(3);...
 E1(3) E2(3) E3(3) 0 ;...
 H1(1) H2(1) H3(1) H4(1)];

276

 b = [-M3(2) -M3(3) -M4(3) -System_Force_U(1)]';

 x = inv(Coefficient)*b;

 Fn_SRF = x(1);
 Fn_SRR = x(2);
 Fn_SLF = x(3);
 Fn_SLR = x(4);

 end

%_______________________
% tolerance
%
if abs(Fn_SRF) < TOL
 Fn_SRF = 0;
end
if abs(Fn_SRR) < TOL
 Fn_SRR = 0;
end
if abs(Fn_SLF) < TOL
 Fn_SLF = 0;
end
if abs(Fn_SLR) < TOL
 Fn_SLR = 0;
end
%_______________________
% Constraints: poistive Normal forces
% touching point
if (Fn_SRR <= 0 && Fn_SLR <= 0)
 touchRR = 0;
 touchLR = 0;
 Fn_SRF = -M3(2)/D1(2);
 Fn_SLF = -M1(2)/B2(2);
elseif (Fn_SRF <= 0 && Fn_SLF <= 0)
 touchRF = 0;
 touchLF = 0;
 Fn_SRR = -M4(2)/E2(2);
 Fn_SLR = -M2(2)/C3(2);
elseif (Fn_SRF <= 0 && Fn_SRR <= 0)
 touchRF = 0;
 touchRR = 0;
 Fn_SLF = -M4(3)/E3(3);
 Fn_SLR = -M3(3)/D3(3);
elseif (Fn_SLF <= 0 && Fn_SLR <= 0)
 touchLF = 0;
 touchLR = 0;
 Fn_SRF = -M2(3)/C1(3);
 Fn_SRR = -M1(3)/B1(3);
end

277

if Fn_SRF <= 0
 touchRF = 0;
 Fn_SRF = 0;
end
if Fn_SRR <= 0
 touchRR = 0;
 Fn_SRR = 0;
end
if Fn_SLF <= 0
 touchLF = 0;
 Fn_SLF = 0;
end
if Fn_SLR <= 0
 touchLR = 0;
 Fn_SLR = 0;
end

FnSRF = Fn_SRF;
FnSRR = Fn_SRR;
FnSLF = Fn_SLF;
FnSLR = Fn_SLR;

xxx = FnSRF + FnSRR + FnSLF + FnSLR;
%______________________________________
rU_CM = (rcU_0R*m0 + rcU_1R*m1 + rcU_2R*m2 + rcU_3RF*m3 + rcU_4RF*m4 + rcU_3RR*m3 +
rcU_4RR*m4 ...
 + rcU_1L*m1 + rcU_2L*m2 + rcU_3LF*m3 + rcU_4LF*m4 + rcU_3LR*m3 +
rcU_4LR*m4)/ ...
 (m0 + 2*(m1 + m2) + 4*(m3 + m4));

rCM_4RF = rU_4RF - rU_CM;
rCM_4RR = rU_4RR - rU_CM;
rCM_4LF = rU_4LF - rU_CM;
rCM_4LR = rU_4LR - rU_CM;

r0R_4LF = inv(AU_0R(1:3, 1:3)) * rU_4RF;
r0R_CM = inv(AU_0R(1:3, 1:3)) * rU_CM;
rCM0_4LF = r0R_4LF - r0R_CM;
alfa_LF = atan2(rCM0_4LF(1), rCM0_4LF(3))*180/pi + 90;

alfa_yU_RF = atan2(rCM_4RF(1), rCM_4RF(3))*180/pi + 90;
alfa_yU_RR = atan2(rCM_4RR(1), rCM_4RR(3))*180/pi + 90;
alfa_yU_LF = atan2(rCM_4LF(1), rCM_4LF(3))*180/pi + 90;
alfa_yU_LR = atan2(rCM_4LR(1), rCM_4LR(3))*180/pi + 90;

alpha_yU_Front = alfa_yU_RF -alfa_yU_LF;
alpha_yU_Rear = alfa_yU_RR -alfa_yU_LR;

alfa_zU_RF = atan2(rCM_4RF(1), rCM_4RF(2))*180/pi + 90;
alfa_zU_RR = atan2(rCM_4RR(1), rCM_4RR(2))*180/pi + 90;
alfa_zU_LF = atan2(rCM_4LF(1), rCM_4LF(2))*180/pi + 90;

278

alfa_zU_LR = atan2(rCM_4LR(1), rCM_4LR(2))*180/pi + 90;

alpha_zU_Front = alfa_zU_RF -alfa_zU_LF;
alpha_zU_Rear = alfa_zU_RR -alfa_zU_LR;

alfa_weight = atan2(System_Force_U(1), System_Force_U(3))*180/pi + 90;

w_CM = [-43.56; 0 ;0];
M4RF = cross(rCM_4RF, w_CM);
M4RR = cross(rCM_4RR, w_CM);
M4LF = cross(rCM_4LF, w_CM);
M4LR = cross(rCM_4LR, w_CM);

MU_CM = cross(rU_CM , w_CM);
MU_nSRF = cross(rU_4RF, [FnSRF; 0; 0]);
MU_nSRR = cross(rU_4RR, [FnSRR; 0; 0]);
MU_nSLF = cross(rU_4LF, [FnSLF; 0; 0]);
MU_nSLR = cross(rU_4LR, [FnSLR; 0; 0]);

%________________________________
% Center of Mass Position vector with respect to universal farme
%
 rU_CM = (rcU_0R*m0 + rcU_1R*m1 + rcU_2R*m2 + rcU_3RF*m3 + rcU_4RF*m4 + rcU_3RR*m3 +
rcU_4RR*m4 ...
 + rcU_1L*m1 + rcU_2L*m2 + rcU_3LF*m3 + rcU_4LF*m4 + rcU_3LR*m3 + rcU_4LR*m4)/ ...
 (m0 + 2*(m1 + m2) + 4*(m3 + m4));

%__
% System Forces
%
FU = touchRF * AU_SRF(1:3,1:3)*[FnSRF -meu 0]' + ...
 touchRR * AU_SRR(1:3,1:3)*[FnSRR -meu 0]' + ...
 touchLF * AU_SLF(1:3,1:3)*[FnSLF -meu 0]' + ...
 touchLR * AU_SLR(1:3,1:3)*[FnSLR -meu 0]' + ...
 AU_4RF(1:3,1:3)*f4RR + AU_3RF(1:3,1:3)*f3RF + AU_4RR(1:3,1:3)*f4RR +
AU_3RR(1:3,1:3)*f3RR + ...
 AU_2R(1:3,1:3)*f2R + AU_1R(1:3,1:3)*f1R + AU_4LF(1:3,1:3)*f4LF + AU_3LF(1:3,1:3)*f3LF + ...
 AU_4LR(1:3,1:3)*f4LR + AU_3LR(1:3,1:3)*f3LR + AU_2L(1:3,1:3)*f2L + AU_1L(1:3,1:3)*f1L + ...
 AU_0R(1:3,1:3)*f0R;

fc = AU_4RF(1:3,1:3)*f4RF + AU_3RF(1:3,1:3)*f3RF + ...
 AU_4RR(1:3,1:3)*f4RR + AU_3RR(1:3,1:3)*f3RR + ...
 AU_2R(1:3,1:3)*f2R + AU_1R(1:3,1:3)*f1R + ...
 AU_0R(1:3,1:3)*f0R + AU_1L(1:3,1:3)*f1L + ...
 AU_2L(1:3,1:3)*f2L + AU_3LF(1:3,1:3)*f3LF + ...
 AU_4LF(1:3,1:3)*f4LF + AU_3LR(1:3,1:3)*f3LR + ...
 AU_4LR(1:3,1:3)*f4LR;

f_gravity = [-Mass*g; 0; 0];

f_inertial = fc - [-Mass*g; 0; 0];
%___

279

% System Moments
%
MU = touchRF * cross(rU_4RF, AU_SRF(1:3,1:3)*[FnSRF -meu*FnSRF 0]') + ...
 touchRR * cross(rU_4RR, AU_SRR(1:3,1:3)*[FnSRR -meu*FnSRR 0]') + ...
 touchLF * cross(rU_4LF, AU_SLF(1:3,1:3)*[FnSLF -meu*FnSLF 0]') + ...
 touchLR * cross(rU_4LR, AU_SLR(1:3,1:3)*[FnSLR -meu*FnSLR 0]') + ...
 cross(rcU_4RF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU_3RF(1:3,1:3)*f3RF)+...
 cross(rcU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU_3RR(1:3,1:3)*f3RR)+...
 cross(rcU_2R, AU_2R(1:3,1:3)*f2R) + cross(rcU_1R, AU_1R(1:3,1:3)*f1R)+...
 cross(rcU_0R, AU_0R(1:3,1:3)*f0R) + cross(rcU_1L, AU_1L(1:3,1:3)*f1L)+...
 cross(rcU_2L, AU_2L(1:3,1:3)*f2L) + cross(rcU_3LF, AU_3LF(1:3,1:3)*f3LF)+...
 cross(rcU_4LF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU_3LR(1:3,1:3)*f3LR)+...
 cross(rcU_4LR, AU_4LR(1:3,1:3)*f4LR) + ...
 AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + ...
 AU_4RR(1:3,1:3)*tow4RR + AU_3RR(1:3,1:3)*tow3RR + ...
 AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + ...
 AU_4LR(1:3,1:3)*tow4LR + AU_3LR(1:3,1:3)*tow3LR + ...
 AU_2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*tow1R + ...
 AU_2L(1:3,1:3)*tow2L + AU_1L(1:3,1:3)*tow1L + ...
 AU_0R(1:3,1:3)*tow0R;

towc = AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF +...
 AU_4RR(1:3,1:3)*tow4RR + AU_3RR(1:3,1:3)*tow3RR +...
 AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF +...
 AU_4LR(1:3,1:3)*tow4LR + AU_3LR(1:3,1:3)*tow3LR +...
 AU_2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*tow1R +...
 AU_2L(1:3,1:3)*tow2L + AU_1L(1:3,1:3)*tow1L +...
 AU_0R(1:3,1:3)*tow0R;

fc_Moment = cross(rcU_4RF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU_3RF(1:3,1:3)*f3RF)+...
 cross(rcU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU_3RR(1:3,1:3)*f3RR)+...
 cross(rcU_2R, AU_2R(1:3,1:3)*f2R) + cross(rcU_1R, AU_1R(1:3,1:3)*f1R)+...
 cross(rcU_0R, AU_0R(1:3,1:3)*f0R) + cross(rcU_1L, AU_1L(1:3,1:3)*f1L)+...
 cross(rcU_2L, AU_2L(1:3,1:3)*f2L) + cross(rcU_3LF, AU_3LF(1:3,1:3)*f3LF)+...
 cross(rcU_4LF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU_3LR(1:3,1:3)*f3LR)+...
 cross(rcU_4LR, AU_4LR(1:3,1:3)*f4LR);

f_gravity_Moment = cross(rU_CM, f_gravity);

f_inertial_Moment = cross(rU_CM, f_inertial);

Normal_Forces_moments = touchRF * cross(rU_4RF, AU_SRF(1:3,1:3)*[FnSRF -meu 0]') + ...
 touchRR * cross(rU_4RR, AU_SRR(1:3,1:3)*[FnSRR -meu 0]') + ...
 touchLF * cross(rU_4LF, AU_SLF(1:3,1:3)*[FnSLF -meu 0]') + ...
 touchLR * cross(rU_4LR, AU_SLR(1:3,1:3)*[FnSLR -meu 0]');

%__
% Masses on the four legs
%
 mSRF = FnSRF / (g * cos(Pitch));
 mSRR = FnSRR / (g * cos(Pitch));
 mSLF = FnSLF / (g * cos(Pitch));

280

 mSLR = FnSLR / (g * cos(Pitch));

 mass = mSRF + mSRR + mSLF + mSLR;
%____________________________________

FNSRF = -M2(3)/(touchRF*C1(3));
FNSRR = -M1(3)/(touchRR*B1(3));

if FNSRF <= 0
 FNSRF = 0;
end
if FNSRR <= 0
 FNSRR = 0;
end

tow_Critical_Right = touchRF * cross(rU_4RF, AU_SRF(1:3,1:3)*[FNSRF -meu*FNSRF 0]') + ...
 touchRR * cross(rU_4RR, AU_SRR(1:3,1:3)*[FNSRR -meu*FNSRR 0]') + ...
 cross(rcU_4RF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU_3RF(1:3,1:3)*f3RF)+...
 cross(rcU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU_3RR(1:3,1:3)*f3RR)+...
 cross(rcU_2R, AU_2R(1:3,1:3)*f2R) + cross(rcU_1R, AU_1R(1:3,1:3)*f1R)+...
 cross(rcU_0R, AU_0R(1:3,1:3)*f0R) + cross(rcU_1L, AU_1L(1:3,1:3)*f1L)+...
 cross(rcU_2L, AU_2L(1:3,1:3)*f2L) + cross(rcU_3LF, AU_3LF(1:3,1:3)*f3LF)+...
 cross(rcU_4LF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU_3LR(1:3,1:3)*f3LR)+...
 cross(rcU_4LR, AU_4LR(1:3,1:3)*f4LR) + ...
 AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + ...
 AU_4RR(1:3,1:3)*tow4RR + AU_3RR(1:3,1:3)*tow3RR + ...
 AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + ...
 AU_4LR(1:3,1:3)*tow4LR + AU_3LR(1:3,1:3)*tow3LR + ...
 AU_2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*tow1R + ...
 AU_2L(1:3,1:3)*tow2L + AU_1L(1:3,1:3)*tow1L + ...
 AU_0R(1:3,1:3)*tow0R;

FNSRF = -M3(2)/(touchRF*D1(2));
FNSLF = -M1(2)/(touchLF*B2(2));

if FNSRF <= 0
 FNSRF = 0;
end
if FNSLF <= 0
 FNSLF = 0;
end

tow_Critical_Front = touchRF * cross(rU_4RF, AU_SRF(1:3,1:3)*[FNSRF -meu*FNSRF 0]') + ...
 touchLF * cross(rU_4LF, AU_SLF(1:3,1:3)*[FNSLF -meu*FNSLF 0]') + ...
 cross(rcU_4RF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU_3RF(1:3,1:3)*f3RF)+...
 cross(rcU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU_3RR(1:3,1:3)*f3RR)+...
 cross(rcU_2R, AU_2R(1:3,1:3)*f2R) + cross(rcU_1R, AU_1R(1:3,1:3)*f1R)+...
 cross(rcU_0R, AU_0R(1:3,1:3)*f0R) + cross(rcU_1L, AU_1L(1:3,1:3)*f1L)+...
 cross(rcU_2L, AU_2L(1:3,1:3)*f2L) + cross(rcU_3LF, AU_3LF(1:3,1:3)*f3LF)+...
 cross(rcU_4LF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU_3LR(1:3,1:3)*f3LR)+...
 cross(rcU_4LR, AU_4LR(1:3,1:3)*f4LR) + ...
 AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + ...

281

 AU_4RR(1:3,1:3)*tow4RR + AU_3RR(1:3,1:3)*tow3RR + ...
 AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + ...
 AU_4LR(1:3,1:3)*tow4LR + AU_3LR(1:3,1:3)*tow3LR + ...
 AU_2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*tow1R + ...
 AU_2L(1:3,1:3)*tow2L + AU_1L(1:3,1:3)*tow1L + ...
 AU_0R(1:3,1:3)*tow0R;

%FNSRF
%FNSLF

FNSLF = -M4(3)/(touchLF*E3(3));
FNSLR = -M3(3)/(touchLR*D3(3));

if FNSLF <= 0
 FNSLF = 0;
end
if FNSLR <= 0
 FNSLR = 0;
end

tow_Critical_Left = touchLF * cross(rU_4LF, AU_SLF(1:3,1:3)*[FNSLF -meu*FNSLF 0]') + ...
 touchLR * cross(rU_4LR, AU_SLR(1:3,1:3)*[FNSLR -meu*FNSLR 0]') + ...
 cross(rcU_4RF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU_3RF(1:3,1:3)*f3RF)+...
 cross(rcU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU_3RR(1:3,1:3)*f3RR)+...
 cross(rcU_2R, AU_2R(1:3,1:3)*f2R) + cross(rcU_1R, AU_1R(1:3,1:3)*f1R)+...
 cross(rcU_0R, AU_0R(1:3,1:3)*f0R) + cross(rcU_1L, AU_1L(1:3,1:3)*f1L)+...
 cross(rcU_2L, AU_2L(1:3,1:3)*f2L) + cross(rcU_3LF, AU_3LF(1:3,1:3)*f3LF)+...
 cross(rcU_4LF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU_3LR(1:3,1:3)*f3LR)+...
 cross(rcU_4LR, AU_4LR(1:3,1:3)*f4LR) + ...
 AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + ...
 AU_4RR(1:3,1:3)*tow4RR + AU_3RR(1:3,1:3)*tow3RR + ...
 AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + ...
 AU_4LR(1:3,1:3)*tow4LR + AU_3LR(1:3,1:3)*tow3LR + ...
 AU_2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*tow1R + ...
 AU_2L(1:3,1:3)*tow2L + AU_1L(1:3,1:3)*tow1L + ...
 AU_0R(1:3,1:3)*tow0R;

FNSRR = -M4(2)/(touchRR*E2(2));
FNSLR = -M2(2)/(touchLR*C3(2));

if FNSRR <= 0
 FNSRR = 0;
end
if FNSLR <= 0
 FNSLR = 0;
end

tow_Critical_Rear = touchRR * cross(rU_4RR, AU_SRR(1:3,1:3)*[FNSRR -meu*FNSRR 0]') + ...
 touchLR * cross(rU_4LR, AU_SLR(1:3,1:3)*[FNSLR -meu*FNSLR 0]') + ...
 cross(rcU_4RF, AU_4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU_3RF(1:3,1:3)*f3RF)+...
 cross(rcU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU_3RR(1:3,1:3)*f3RR)+...
 cross(rcU_2R, AU_2R(1:3,1:3)*f2R) + cross(rcU_1R, AU_1R(1:3,1:3)*f1R)+...

282

 cross(rcU_0R, AU_0R(1:3,1:3)*f0R) + cross(rcU_1L, AU_1L(1:3,1:3)*f1L)+...
 cross(rcU_2L, AU_2L(1:3,1:3)*f2L) + cross(rcU_3LF, AU_3LF(1:3,1:3)*f3LF)+...
 cross(rcU_4LF, AU_4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU_3LR(1:3,1:3)*f3LR)+...
 cross(rcU_4LR, AU_4LR(1:3,1:3)*f4LR) + ...
 AU_4RF(1:3,1:3)*tow4RF + AU_3RF(1:3,1:3)*tow3RF + ...
 AU_4RR(1:3,1:3)*tow4RR + AU_3RR(1:3,1:3)*tow3RR + ...
 AU_4LF(1:3,1:3)*tow4LF + AU_3LF(1:3,1:3)*tow3LF + ...
 AU_4LR(1:3,1:3)*tow4LR + AU_3LR(1:3,1:3)*tow3LR + ...
 AU_2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*tow1R + ...
 AU_2L(1:3,1:3)*tow2L + AU_1L(1:3,1:3)*tow1L + ...
 AU_0R(1:3,1:3)*tow0R;
 %FNSRR
 %FNSLR
 % pause

DH.m

% A Denavit Hartenberg Parameters describes the kinematics of a manipulator
%
% these DH Parameters are filled in matrix, each row represents one link of
% the manipulator
% our mobile robot have no prismatic joint. so, the variable joints are joints' angles
% represented in theta.

% All joints' angles are defined in radians.

function dh= DH(q)

theta = q;

%theta(4); % theta_4 does not effect on the manipulation.

% theta d a alpha sigma
%__

dh=[0 0 0 0 0

 theta(1) 0.2 0 -pi/2 0

 theta(2) 0 0 pi/2 0

 theta(3) 0 0.4 0 0

 theta(4) 0 0.05 0 0];

283

DHtransformation.m

%T = [cos(theta) -sin(theta)*cos(alpha) sin(theta)*sin(alpha) a*cos(theta)
% sin(theta) cos(theta)*cos(alpha) -cos(theta)*sin(alpha) a*sin(theta)
% 0 sin(alpha) cos(alpha) d
% 0 0 0 1];

function [T] = DHtransformation(theta, d, a, alpha)

T = rotz(theta) * translation(0,0,d) * translation(a,0,0) * rotx(alpha);

Dynamics.m

function D = Dynamics(d, a)

d1 = d(1);
d2 = 0;
a3 = a(3);
a4 = a(4);

a = 0.30; % half length of the platform in meter
b = 0.02; % half sickness of the platform in meter
%-------- Platform Mass, Volume and Density ------

 m0 = 4; % kg
 m1 = 1; % kg
 m2 = 0; % kg
 m3 = 1; % kg

%-------- wheel Mass, Volume and Density ------
 a4_ex = a4;
 a4_in = 0.03;

 %density = 79.577471;
 density = 98.999999;
 Volume4_ex = pi * a4_ex^2;
 Volume4_in = pi * a4_in^2;

 m4_ex = density * Volume4_ex; % kg
 m4_in = density * Volume4_in; % kg

 m4 = 0.5; % kg, m4 = m4_ex - m4_in = 0.4976;

m = [m0, m1, m2, m3, m4]';

%----------------------
% Position vector of center of masses

284

rc_0 = [0 0 0]';
rc_1 = [0 0.5*d1 0]';
rc_2 = [0 0 -0.5*d2]';
rc_3 = [-0.5*a3 0 0]';
rc_4 = [-a4 0 0]';

rc = [rc_0, rc_1, rc_2, rc_3, rc_4]';
%---
% Inertia matrices

I0 = (m0/3)*[a^2+d1^2 0 0; 0 b^2+d1^2 0;0 0 a^2+b^2];
I1 = (m1*d1^2/12)*[1 0 0; 0 0 0; 0 0 1];
I2 = (m2*d2^2/12)*[1 0 0; 0 1 0; 0 0 0];
I3 = (m3*a3^2/12)*[0 0 0; 0 1 0; 0 0 1];

I4_ex = (m4_ex*a4_ex^2)*[1/4 0 0; 0 1/4 0; 0 0 1/2];
I4_in = (m4_in*a4_in^2)*[1/4 0 0; 0 1/4 0; 0 0 1/2];
I4 = I4_ex - I4_in;

I = [I0(1,1) I0(2,2) I0(3,3) I0(1,2) I0(2,3) I0(1,3);...
 I1(1,1) I1(2,2) I1(3,3) I1(1,2) I1(2,3) I1(1,3);...
 I2(1,1) I2(2,2) I2(3,3) I2(1,2) I2(2,3) I2(1,3);...
 I3(1,1) I3(2,2) I3(3,3) I3(1,2) I3(2,3) I3(1,3);...
 I4(1,1) I4(2,2) I4(3,3) I4(1,2) I4(2,3) I4(1,3)];

%---

% m rx ry rz Ixx Iyy Izz I
D= [m, rc, I];

HT_2_RPY.m

function [alpha_1,alpha_2,alpha_3] = HT_2_RPY(A_0_4)

%-------------
nx = A_0_4(1,1);
ny = A_0_4(2,1);
nz = A_0_4(3,1);

ox = A_0_4(1,2);
oy = A_0_4(2,2);
oz = A_0_4(3,2);

ax = A_0_4(1,3);
ay = A_0_4(2,3);
az = A_0_4(3,3);
%-------------

alpha_2 = atan2(-nz, nx);

285

alpha_3 = atan2(ny, (cos(alpha_2)*nx - sin(alpha_2)*nz));
alpha_1 = atan2((sin(alpha_2)*ox + cos(alpha_2)*oz), (sin(alpha_2)*ax + cos(alpha_2)*az));
%-------------

Invkinematic.m

function theta = invkinematic(T, s)

TOL = 0.001;
[nr, nc] = size(T);

% test for accuracy
for i=1:nr
 for j=1:nc
 if abs(T(i,j)) < TOL
 T(i,j) = 0;
 end
 end
end

d1 = 0.2;
a3 = 0.4;
a4 = 0.05;

 nx = T(1,1);
 ny = T(2,1);
 nz = T(3,1);

 ox = T(1,2);
 oy = T(2,2);
 oz = T(3,2);

 ax = T(1,3);
 ay = T(2,3);
 az = T(3,3);

 px = T(1,4);
 py = T(2,4);
 pz = T(3,4);

 theta_1 = atan2(ay,ax);

 theta_2 = atan2(-(-pz+d1), -(cos(theta_1)*px + sin(theta_1)*py));

 K1 = cos(theta_1)*cos(theta_2)*px + sin(theta_1)*cos(theta_2)*py - sin(theta_2)*pz + sin(theta_2)*d1;
 K2 = -sin(theta_1)*px + cos(theta_1)*py;

 if (s == 'RF')

286

 theta_4 = acos((K1^2 + K2^2 - (a4^2+a3^2))/ (2*a3*a4));

 elseif (s == 'LF')
 theta_4 = -acos((K1^2 + K2^2 - (a4^2+a3^2))/ (2*a3*a4));

 end

 K3 = a4*cos(theta_4) + a3;
 K4 = a4*sin(theta_4);
 theta_3 = atan2((K1*K4 - K2*K3), -(K1*K3 + K2*K4));

 theta = [theta_1; theta_2; theta_3; theta_4]*180/pi;

Kinematic.m

function [A_0_4] = Kinematic(theta, d, a, alpha, B3, pitch)

theta(4) = -theta(1) - theta(3) + B3 - pitch; % theta_4 manipulated in contact point of wheel with ground
theta(3) = theta(3) + pi;

for i=1:4

 A = DHtransformation(theta(i), d(i), a(i), alpha(i));

 if (i==1)
 A_0_1 = A;
 elseif (i==2)
 A_1_2 = A;
 elseif (i==3)
 A_2_3 = A;
 elseif (i==4)
 A_3_4 = A;

 end;

 end;

A_0_4 = A_0_1 * A_1_2 * A_2_3 * A_3_4; %Homogeneous Transformation from base to end-effector
frame

locomotion_DN.m

%
% increasing velocity linearly = vv*t(p), and constant acceleration = vv
%

function [A_4RF, A_4RR, A_4LF, A_4LR, V_4RF, V_4RR, V_4LF, V_4LR, d_4RF, d_4RR, d_4LF,
d_4LR,...
 Tdd_RF, Tdd_RR, Tdd_LF, Tdd_LR, Td_RF, Td_RR, Td_LF, Td_LR,...
 T_RF, T_RR, T_LF, T_LR, tdelay_R, tdelay_L] = locomotion_DN(Touch, vv, t, a, q0)

287

np = numcols(t);

At4RF = zeros(np,1); At4RR = zeros(np,1); At4LF = zeros(np,1); At4LR = zeros(np,1);
Vt4RF = zeros(np,1); Vt4RR = zeros(np,1); Vt4LF = zeros(np,1); Vt4LR = zeros(np,1);
D_4RF = zeros(1,np); D_4RR = zeros(1,np); D_4LF = zeros(1,np); D_4LR = zeros(1,np);

Thetadd_RF = zeros(np,1); Thetadd_RR = zeros(np,1); Thetadd_LF = zeros(np,1); Thetadd_LR =
zeros(np,1);
Thetad_RF = zeros(np,1); Thetad_RR = zeros(np,1); Thetad_LF = zeros(np,1); Thetad_LR = zeros(np,1);
Theta_RF = zeros(np,1); Theta_RR = zeros(np,1); Theta_LF = zeros(np,1); Theta_LR = zeros(np,1);

for p=1:np,

 At4RF(p) = Touch(1)*vv; % m/(sec*sec)
 At4RR(p) = Touch(2)*vv; % m/(sec*sec)
 At4LF(p) = -Touch(3)*vv; % m/(sec*sec)
 At4LR(p) = -Touch(4)*vv; % m/(sec*sec)

 Vt4RF(p) = Touch(1)*vv*t(p); % m/sec
 Vt4RR(p) = Touch(2)*vv*t(p); % m/sec
 Vt4LF(p) = -Touch(3)*vv*t(p); % m/sec
 Vt4LR(p) = -Touch(4)*vv*t(p); % m/sec

 D_4RF(p) = Touch(1)*vv*(0.5*t(p)^2); % m
 D_4RR(p) = Touch(2)*vv*(0.5*t(p)^2); % m
 D_4LF(p) = Touch(3)*vv*(-0.5*t(p)^2); % m
 D_4LR(p) = Touch(4)*vv*(-0.5*t(p)^2); % m

 Thetadd_RF(p) = At4RF(p)/a(4); % rad/(sec*sec)
 Thetadd_RR(p) = At4RR(p)/a(4); % rad/(sec*sec)
 Thetadd_LF(p) = At4LF(p)/a(4); % rad/(sec*sec)
 Thetadd_LR(p) = At4LR(p)/a(4); % rad/(sec*sec)

 Thetad_RF(p) = Vt4RF(p)/a(4); % rad/sec
 Thetad_RR(p) = Vt4RR(p)/a(4); % rad/sec
 Thetad_LF(p) = Vt4LF(p)/a(4); % rad/sec
 Thetad_LR(p) = Vt4LR(p)/a(4); % rad/sec

 Theta_RF(p) = D_4RF(p)/a(4); % rad
 Theta_RR(p) = D_4RR(p)/a(4); % rad
 Theta_LF(p) = D_4LF(p)/a(4); % rad
 Theta_LR(p) = D_4LR(p)/a(4); % rad
end

% ___
% time delay occured between the front and rear legs on both sides; right
% and front sides
%
tdelay_R = sqrt((-a(3)*sin(q0(3,1)) + a(3)*sin(q0(3,2)))/(vv*0.5));
tdelay_L = sqrt((a(3)*sin(q0(3,3)) - a(3)*sin(q0(3,4)))/(vv*0.5));
%___
A_4RF = At4RF; A_4RR = At4RR; A_4LF = At4LF; A_4LR = At4LR;

288

V_4RF = Vt4RF; V_4RR = Vt4RR; V_4LF = Vt4LF; V_4LR = Vt4LR;

d_4RF = D_4RF; d_4RR = D_4RR;
d_4LF = D_4LF; d_4LR = D_4LR;

Tdd_RF = Thetadd_RF; Tdd_RR = Thetadd_RR;
Tdd_LF = Thetadd_LF; Tdd_LR = Thetadd_LR;

Td_RF = Thetad_RF; Td_RR = Thetad_RR;
Td_LF = Thetad_LF; Td_LR = Thetad_LR;

T_RF = Theta_RF; T_RR = Theta_RR;
T_LF = Theta_LF; T_LR = Theta_LR;

Rotx.m

%
% homogeneous transformation for a rotation of t about the x-axis.
%
function r = rotx(t)

r = [1 0 0 0
 0 cos(t) -sin(t) 0
 0 sin(t) cos(t) 0
 0 0 0 1];

Roty.m

%
% homogeneous transformation for a rotation of t about the y-axis.
%

function r = roty(t)

r = [cos(t) 0 sin(t) 0
 0 1 0 0
 -sin(t) 0 cos(t) 0
 0 0 0 1];

Rotz.m

%
% homogeneous transformation for a rotation of t about the z-axis.
%

function r = rotz(t)

r = [cos(t) -sin(t) 0 0
 sin(t) cos(t) 0 0
 0 0 1 0
 0 0 0 1];

289

GG1.m

%
% Flat Surface
%

function [input_RF, input_RR, input_LF, input_LR, ...
 beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs,...
 beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG15(t, tdelay_R, tdelay_L, a, q0),

ns = numcols(t);
tm = t(ns)/2;

tp_R = tdelay_R; %time delay b/w RF and RR
tp_L = tdelay_L; %time delay b/w LF and LR

LEG_RF = zeros(1,ns);
LEG_RR = zeros(1,ns);
LEG_LR = zeros(1,ns);
LEG_LF = zeros(1,ns);

BETA_SRF_zs = zeros(1, ns);
BETA_SRR_zs = zeros(1, ns);
BETA_SLF_zs = zeros(1, ns);
BETA_SLR_zs = zeros(1, ns);

BETA_SRF_ys = zeros(1, ns);
BETA_SRR_ys = zeros(1, ns);
BETA_SLF_ys = zeros(1, ns);
BETA_SLR_ys = zeros(1, ns);

for p=1:ns

 LEG_RF(p) = 3;
 LEG_RR(p) = 3;
 LEG_LF(p) = 3;
 LEG_LR(p) = 3;
end

for p=1:ns
 BETA_SRF_zs(p) = 0;
 BETA_SRR_zs(p) = 0;
 BETA_SLF_zs(p) = 0;
 BETA_SLR_zs(p) = 0;

 BETA_SRF_ys(p) = 0;
 BETA_SRR_ys(p) = 0;
 BETA_SLF_ys(p) = 0;
 BETA_SLR_ys(p) = 0;
end
BETA_SRR_zs*180/pi;

290

input_RF = LEG_RF;
input_RR = LEG_RR;
input_LF = LEG_LF;
input_LR = LEG_LR;

beta_SRF_zs = BETA_SRF_zs;
beta_SRR_zs = BETA_SRR_zs;
beta_SLF_zs = BETA_SLF_zs;
beta_SLR_zs = BETA_SLR_zs;

beta_SRF_ys = BETA_SRF_ys;
beta_SRR_ys = BETA_SRR_ys;
beta_SLF_ys = BETA_SLF_ys;
beta_SLR_ys = BETA_SLR_ys;

GG2.m

%
% Step flat-inclined surface
%

function [input_RF, input_RR, input_LF, input_LR, ...
 beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs,...
 beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG15(t, tdelay_R, tdelay_L, a, q0),

ns = numcols(t);

tp_R = tdelay_R; %time delay b/w RF and RR
tp_L = tdelay_L; %time delay b/w LF and LR

LEG_RF = zeros(1,ns);
LEG_RR = zeros(1,ns);
LEG_LR = zeros(1,ns);
LEG_LF = zeros(1,ns);

BETA_SRF_zs = zeros(1, ns);
BETA_SRR_zs = zeros(1, ns);
BETA_SLF_zs = zeros(1, ns);
BETA_SLR_zs = zeros(1, ns);

BETA_SRF_ys = zeros(1, ns);
BETA_SRR_ys = zeros(1, ns);
BETA_SLF_ys = zeros(1, ns);
BETA_SLR_ys = zeros(1, ns);

for p=1:ns
 LEG_RF(p) = 3.2;
 LEG_RR(p) = 3.2;
 LEG_LF(p) = 3;
 LEG_LR(p) = 3;
end

291

for p=1:ns
 BETA_SRF_zs(p) = 0;
 BETA_SRR_zs(p) = 0;
 BETA_SLF_zs(p) = 0;
 BETA_SLR_zs(p) = 0;

 BETA_SRF_ys(p) = 0;
 BETA_SRR_ys(p) = 0;
 BETA_SLF_ys(p) = pi/8;
 BETA_SLR_ys(p) = pi/8;
end

%BETA_SRR_zs*180/pi;

input_RF = LEG_RF;
input_RR = LEG_RR;
input_LF = LEG_LF;
input_LR = LEG_LR;

beta_SRF_zs = BETA_SRF_zs;
beta_SRR_zs = BETA_SRR_zs;
beta_SLF_zs = BETA_SLF_zs;
beta_SLR_zs = BETA_SLR_zs;

beta_SRF_ys = BETA_SRF_ys;
beta_SRR_ys = BETA_SRR_ys;
beta_SLF_ys = BETA_SLF_ys;
beta_SLR_ys = BETA_SLR_ys;

GG9.m

%
% Inclined surface
%

function [input_RF, input_RR, input_LF, input_LR, ...
 beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs,...
 beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG9(t, tdelay_R, tdelay_L, a, q0),

ns = numcols(t);

tp_R = tdelay_R; %time delay b/w RF and RR
tp_L = tdelay_L; %time delay b/w LF and LR

LEG_RF = zeros(1,ns);
LEG_RR = zeros(1,ns);
LEG_LR = zeros(1,ns);
LEG_LF = zeros(1,ns);

292

BETA_SRF_zs = zeros(1, ns);
BETA_SRR_zs = zeros(1, ns);
BETA_SLF_zs = zeros(1, ns);
BETA_SLR_zs = zeros(1, ns);

BETA_SRF_ys = zeros(1, ns);
BETA_SRR_ys = zeros(1, ns);
BETA_SLF_ys = zeros(1, ns);
BETA_SLR_ys = zeros(1, ns);

for p=1:ns

 LEG_RF(p) = 3.2;
 LEG_RR(p) = 3;
 LEG_LF(p) = 3.2;
 LEG_LR(p) = 3;
end

for p=1:ns
 BETA_SRF_zs(p) = -20.70808185*pi/180;
 BETA_SRR_zs(p) = -20.70808185*pi/180;
 BETA_SLF_zs(p) = -20.70808185*pi/180;
 BETA_SLR_zs(p) = -20.70808185*pi/180;

 BETA_SRF_ys(p) = 0;
 BETA_SRR_ys(p) = 0;
 BETA_SLF_ys(p) = 0;
 BETA_SLR_ys(p) = 0;
end

input_RF = LEG_RF;
input_RR = LEG_RR;
input_LF = LEG_LF;
input_LR = LEG_LR;

beta_SRF_zs = BETA_SRF_zs;
beta_SRR_zs = BETA_SRR_zs;
beta_SLF_zs = BETA_SLF_zs;
beta_SLR_zs = BETA_SLR_zs;

beta_SRF_ys = BETA_SRF_ys;
beta_SRR_ys = BETA_SRR_ys;
beta_SLF_ys = BETA_SLF_ys;
beta_SLR_ys = BETA_SLR_ys;

GG5.m

%
% flat surface, then inclined surface
%

293

function [input_RF, input_RR, input_LF, input_LR, ...
 beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs,...
 beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG5(t, tdelay_R, tdelay_L, a, q0),

ns = numcols(t);
tm = t(ns)/2;

tp_R = tdelay_R; %time delay b/w RF and RR
tp_L = tdelay_L; %time delay b/w LF and LR

LEG_RF = zeros(1,ns);
LEG_RR = zeros(1,ns);
LEG_LR = zeros(1,ns);
LEG_LF = zeros(1,ns);

BETA_SRF_zs = zeros(1, ns);
BETA_SRR_zs = zeros(1, ns);
BETA_SLF_zs = zeros(1, ns);
BETA_SLR_zs = zeros(1, ns);

BETA_SRF_ys = zeros(1, ns);
BETA_SRR_ys = zeros(1, ns);
BETA_SLF_ys = zeros(1, ns);
BETA_SLR_ys = zeros(1, ns);

theta_R = zeros(1, ns);
theta_R = zeros(1, ns);

slope_R = zeros(1, ns);
slope_L = zeros(1, ns);

%__
% Slope
%
for p=1:ns
 if t(p) <= tm
 theta_R = 0;
 theta_L = 0;

 elseif t(p) > tm
 theta_R = pi/6;
 theta_L = pi/6;
 end

 slope_R = ((-a(3)*sin(q0(3,1))+a(3)*sin(q0(3,2)))*sin(theta_R))/tp_R;
 slope_L = ((a(3)*sin(q0(3,3))-a(3)*sin(q0(3,4)))*sin(theta_L))/tp_L;
end

%__
% Surface Function
%
for p=1:ns

294

 if t(p) <= tm
 LEG_RF(p) = 3;
 LEG_RR(p) = 3;
 LEG_LF(p) = 3;
 LEG_LR(p) = 3;

 elseif (t(p) > tm) && (t(p) <= (tm + tp_R))

 LEG_RF(p) = 3 + slope_R*(t(p) - tm);
 LEG_RR(p) = 3;
 LEG_LF(p) = 3 + slope_L*(t(p) - tm);
 LEG_LR(p) = 3;

 elseif t(p) > (tm + tp_R)

 LEG_RF(p) = 3 + slope_R*(t(p) - tm);
 LEG_RR(p) = 3 + slope_R*(t(p) - tp_R - tm);
 LEG_LF(p) = 3 + slope_L*(t(p) - tm);
 LEG_LR(p) = 3 + slope_L*(t(p) - tp_L - tm);

 end
end

for p=1:ns
 if t(p) <= tm
 BETA_SRF_zs(p) = 0;
 BETA_SRR_zs(p) = 0;
 BETA_SLF_zs(p) = 0;
 BETA_SLR_zs(p) = 0;

 elseif (t(p) > tm) && (t(p) <= (tm + tp_R))
 BETA_SRF_zs(p) = -theta_R; %-atan(slope_R);
 BETA_SRR_zs(p) = 0; %-atan(slope_R);
 BETA_SLF_zs(p) = -theta_L; %-atan(slope_L);
 BETA_SLR_zs(p) = 0; %-atan(slope_L);

 elseif t(p) > (tm + tp_R)
 BETA_SRF_zs(p) = -theta_R; %-atan(slope_R);
 BETA_SRR_zs(p) = -theta_R; %-atan(slope_R);
 BETA_SLF_zs(p) = -theta_L; %-atan(slope_L);
 BETA_SLR_zs(p) = -theta_L; %-atan(slope_L);
 end

 BETA_SRF_ys(p) = 0;
 BETA_SRR_ys(p) = 0;
 BETA_SLF_ys(p) = 0;
 BETA_SLR_ys(p) = 0;
end

input_RF = LEG_RF;
input_RR = LEG_RR;

295

input_LF = LEG_LF;
input_LR = LEG_LR;

beta_SRF_zs = BETA_SRF_zs;
beta_SRR_zs = BETA_SRR_zs;
beta_SLF_zs = BETA_SLF_zs;
beta_SLR_zs = BETA_SLR_zs;

beta_SRF_ys = BETA_SRF_ys;
beta_SRR_ys = BETA_SRR_ys;
beta_SLF_ys = BETA_SLF_ys;
beta_SLR_ys = BETA_SLR_ys;

GG7.m

%
% Sinusoidal Surface
%

function [input_RF, input_RR, input_LF, input_LR, ...
 beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs,...
 beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG16(t, tdelay_R, tdelay_L, a, q0),

ns = numcols(t);
tm = t(ns)/2;

tp_R = tdelay_R; %time delay b/w RF and RR
tp_L = tdelay_L; %time delay b/w LF and LR

LEG_RF = zeros(1,ns);
LEG_RR = zeros(1,ns);
LEG_LR = zeros(1,ns);
LEG_LF = zeros(1,ns);

BETA_SRF_zs = zeros(1, ns);
BETA_SRR_zs = zeros(1, ns);
BETA_SLF_zs = zeros(1, ns);
BETA_SLR_zs = zeros(1, ns);

BETA_SRF_ys = zeros(1, ns);
BETA_SRR_ys = zeros(1, ns);
BETA_SLF_ys = zeros(1, ns);
BETA_SLR_ys = zeros(1, ns);

n=20;
Am =0.5;
for p=1:ns
 LEG_RF(p) = 3 + Am*sin((pi*(t(p) + tp_R/2))/(n*tp_R));
 LEG_RR(p) = 3 + Am*sin((pi*(t(p) - tp_R/2))/(n*tp_R));
 LEG_LF(p) = 3 + Am*sin((pi*(t(p) + tp_R/2))/(n*tp_L));
 LEG_LR(p) = 3 + Am*sin((pi*(t(p) - tp_L/2))/(n*tp_L));
end

296

theta = zeros(1,ns);

for p=1:ns
 theta(1,p) = asin((3 + Am*sin((pi*(t(p) - tp_R/2))/(n*tp_R))...
 - 3 - Am*sin((pi*(t(p) + tp_R/2))/(n)))/(-a(3)*sin(q0(3,1))+a(3)*sin(q0(3,2))));
end

for p=1:ns

 BETA_SRF_zs(p) = asin((Am*sin((pi*t(p))/(n*tp_R)) -...
 Am*sin((pi*(t(p) + tp_R))/(n*tp_R)))/(-a(3)*sin(q0(3,1))+a(3)*sin(q0(3,2))));

 BETA_SRR_zs(p) = asin((Am*sin((pi*(t(p) - tp_R))/(n*tp_R)) -...
 Am*sin((pi*t(p))/(n*tp_R)))/(-a(3)*sin(q0(3,1))+a(3)*sin(q0(3,2))));

 BETA_SLF_zs(p) = asin((Am*sin((pi*t(p))/(n*tp_L)) -...
 Am*sin((pi*(t(p) + tp_L))/(n*tp_L)))/(a(3)*sin(q0(3,3))-a(3)*sin(q0(3,4))));

 BETA_SLR_zs(p) = asin((Am*sin((pi*(t(p) - tp_L))/(n*tp_L)) -...
 Am*sin((pi*t(p))/(n*tp_L)))/(a(3)*sin(q0(3,3))-a(3)*sin(q0(3,4))));

 BETA_SRF_ys(p) = 0;
 BETA_SRR_ys(p) = 0;
 BETA_SLF_ys(p) = 0;
 BETA_SLR_ys(p) = 0;
end

input_RF = LEG_RF;
input_RR = LEG_RR;
input_LF = LEG_LF;
input_LR = LEG_LR;

beta_SRF_zs = BETA_SRF_zs;
beta_SRR_zs = BETA_SRR_zs;
beta_SLF_zs = BETA_SLF_zs;
beta_SLR_zs = BETA_SLR_zs;

beta_SRF_ys = BETA_SRF_ys;
beta_SRR_ys = BETA_SRR_ys;
beta_SLF_ys = BETA_SLF_ys;
beta_SLR_ys = BETA_SLR_ys;

297

GG11.m

%
% Random surface
%

function [input_RF, input_RR, input_LF, input_LR, ...
 beta_SRF_zs, beta_SRR_zs, beta_SLF_zs, beta_SLR_zs,...
 beta_SRF_ys, beta_SRR_ys, beta_SLF_ys, beta_SLR_ys] = GG11(t, tdelay_R, tdelay_L, a, q0,...
 d_4RF, d_4RR, d_4LF, d_4LR),

ns = numcols(t);

tp_R = round(tdelay_R) %time delay b/w RF and RR
tp_L = round(tdelay_L) %time delay b/w LF and LR

LEG_RF = zeros(1,ns);
LEG_RR = zeros(1,ns);
LEG_LR = zeros(1,ns);
LEG_LF = zeros(1,ns);

BETA_SRF_zs = zeros(1, ns);
BETA_SRR_zs = zeros(1, ns);
BETA_SLF_zs = zeros(1, ns);
BETA_SLR_zs = zeros(1, ns);

BETA_SRF_ys = zeros(1, ns);
BETA_SRR_ys = zeros(1, ns);
BETA_SLF_ys = zeros(1, ns);
BETA_SLR_ys = zeros(1, ns);

LEG_RF = [3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,...
 3.24,3.28,3.32,3.36,3.40,3.44,3.48,3.52,3.56,3.60,3.64,3.68,3.72,3.76,3.80,3.84,3.88,...
 3.95,4.00,4.05,4.10,4.15,4.20,4.25,4.30,4.35,4.40,4.45,4.50,4.55,4.60,4.65,4.70,4.75,...
 4.80,4.90,5.00,5.10,5.20,5.30,5.40,5.50,5.60,5.70,5.80,5.90,6.00,6.10,6.20,6.30,6.40,...
 6.60,6.80,7.00,7.20,7.40,7.60,7.80,8.00,8.20,8.40,8.60,8.80,9.00,9.20,9.40,9.60,9.80,...
 10.0,10.4,10.8,11.2,11.6,12.00,12.4,12.8,13.2,13.6,14.0,14.4,14.8,15.2,15.6,16.0,16.2,...
 16.4,16.6,16.8,17.0,17.2,17.4,17.6,17.8,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...
 18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...
18.05,18.10,18.15,18.20,18.25,18.30,18.35,18.40,18.45,18.50,18.55,18.60,18.65,18.70,18.75,18.80,18.85,..
18.90,19.0,19.10,19.20,19.30,19.40,19.50,19.60,19.70,19.80,19.90,20.0,20.20,20.40,20.60,20.80,21.0,...
 21.30,21.60,21.90,22.20,22.50,22.80,23.10,23.40,23.70,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,...
 24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0];

LEG_RR = [3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,...
 3.20,3.24,3.28,3.32,3.36,3.40,3.44,3.48,3.52,3.56,3.60,3.64,3.68,3.72,3.76,3.80,3.84,...
 3.88,3.95,4.00,4.05,4.10,4.15,4.20,4.25,4.30,4.35,4.40,4.45,4.50,4.55,4.60,4.65,4.70,...
 4.75,4.80,4.90,5.00,5.10,5.20,5.30,5.40,5.50,5.60,5.70,5.80,5.90,6.00,6.10,6.20,6.30,...
 6.40,6.60,6.80,7.00,7.20,7.40,7.60,7.80,8.00,8.20,8.40,8.60,8.80,9.00,9.20,9.40,9.60,...
 9.80,10.0,10.4,10.8,11.2,11.6,12.0,12.4,12.8,13.2,13.6,14.0,14.4,14.8,15.2,15.6,16.0,...
 16.2,16.4,16.6,16.8,17.0,17.2,17.4,17.6,17.8,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...

298

 18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...
 18.05,18.10,18.15,18.20,18.25,18.30,18.35,18.40,18.45,18.50,18.55,18.60,18.65,18.70,...
18.75,18.80,18.85,18.90,19.0,19.10,19.20,19.30,19.40,19.50,19.60,19.70,19.80,19.90,20.0,20.20,20.40,20.
60,20.80,21.0,...
 21.30,21.60,21.90,22.20,22.50,22.80,23.10,23.40,23.70,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,...
 24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0];

LEG_LF = [3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,...
 3.24,3.28,3.32,3.36,3.40,3.44,3.48,3.52,3.56,3.60,3.64,3.68,3.72,3.76,3.80,3.84,3.88,...
 3.95,4.00,4.05,4.10,4.15,4.20,4.25,4.30,4.35,4.40,4.45,4.50,4.55,4.60,4.65,4.70,4.75,...
 4.80,4.90,5.00,5.10,5.20,5.30,5.40,5.50,5.60,5.70,5.80,5.90,6.00,6.10,6.20,6.30,6.40,...
 6.60,6.80,7.00,7.20,7.40,7.60,7.80,8.00,8.20,8.40,8.60,8.80,9.00,9.20,9.40,9.60,9.80,...
 10.0,10.4,10.8,11.2,11.6,12.00,12.4,12.8,13.2,13.6,14.0,14.4,14.8,15.2,15.6,16.0,16.2,...
 16.4,16.6,16.8,17.0,17.2,17.4,17.6,17.8,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...
 18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...
18.05,18.10,18.15,18.20,18.25,18.30,18.35,18.40,18.45,18.50,18.55,18.60,18.65,18.70,18.75,18.80,18.85,..
.18.90,19.0,19.10,19.20,19.30,19.40,19.50,19.60,19.70,19.80,19.90,20.0,20.20,20.40,20.60,20.80,21.0,...
 21.30,21.60,21.90,22.20,22.50,22.80,23.10,23.40,23.70,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,...
 24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0];

LEG_LR = [3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,...
 3.20,3.24,3.28,3.32,3.36,3.40,3.44,3.48,3.52,3.56,3.60,3.64,3.68,3.72,3.76,3.80,3.84,...
 3.88,3.95,4.00,4.05,4.10,4.15,4.20,4.25,4.30,4.35,4.40,4.45,4.50,4.55,4.60,4.65,4.70,...
 4.75,4.80,4.90,5.00,5.10,5.20,5.30,5.40,5.50,5.60,5.70,5.80,5.90,6.00,6.10,6.20,6.30,...
 6.40,6.60,6.80,7.00,7.20,7.40,7.60,7.80,8.00,8.20,8.40,8.60,8.80,9.00,9.20,9.40,9.60,...
 9.80,10.0,10.4,10.8,11.2,11.6,12.0,12.4,12.8,13.2,13.6,14.0,14.4,14.8,15.2,15.6,16.0,...
 16.2,16.4,16.6,16.8,17.0,17.2,17.4,17.6,17.8,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...
 18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...
 18.05,18.10,18.15,18.20,18.25,18.30,18.35,18.40,18.45,18.50,18.55,18.60,18.65,18.70,...
18.75,18.80,18.85,18.90,19.0,19.10,19.20,19.30,19.40,19.50,19.60,19.70,19.80,19.90,20.0,20.20,20.40,20.
60,20.80,21.0,...
 21.30,21.60,21.90,22.20,22.50,22.80,23.10,23.40,23.70,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,...
 24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0];

for p=1:ns-1

 BETA_SRF_zs(p) = -asin((LEG_RF(p+1)-LEG_RF(p))/ (d_4RF(p+1)-d_4RF(p)));
 BETA_SRR_zs(p) = -asin((LEG_RR(p+1)-LEG_RR(p))/ (d_4RR(p+1)-d_4RR(p)));
 BETA_SLF_zs(p) = -asin((LEG_LF(p+1)-LEG_LF(p))/-(d_4LF(p+1)-d_4LF(p)));
 BETA_SLR_zs(p) = -asin((LEG_LR(p+1)-LEG_LR(p))/-(d_4LR(p+1)-d_4LR(p)));

 BETA_SRF_ys(p) = 0;
 BETA_SRR_ys(p) = 0;
 BETA_SLF_ys(p) = 0;
 BETA_SLR_ys(p) = 0;

end

input_RF = LEG_RF;
input_RR = LEG_RR;
input_LF = LEG_LF;
input_LR = LEG_LR;

299

beta_SRF_zs = BETA_SRF_zs;
beta_SRR_zs = BETA_SRR_zs;
beta_SLF_zs = BETA_SLF_zs;
beta_SLR_zs = BETA_SLR_zs;

beta_SRF_ys = BETA_SRF_ys;
beta_SRR_ys = BETA_SRR_ys;
beta_SLF_ys = BETA_SLF_ys;
beta_SLR_ys = BETA_SLR_ys;

Rover_1.m

q= Conf_0;

DH_RF = DH(q(:,1));
q_RF = DH_RF(2:5,1);

DH_RR = DH(q(:,2));
q_RR = DH_RR(2:5,1);

DH_LF = DH(q(:,3));
q_LF = DH_LF(2:5,1);

DH_LR = DH(q(:,4));
q_LR = DH_LR(2:5,1);

q0 = [q_RF, q_RR, q_LF, q_LR];

Dynamic_Parameters = Dynamics(DH_RF(2:5, 2), DH_RF(2:5, 3));

% theta d a sigma m rx ry rz Ixx Iyy Izz Ixy
 Iyz Ixz
dh_dyn = [DH_RF, Dynamic_Parameters];

%---------------------------------------
q = Conf_1;

DH_RF = DH(q(:,1));
q_RF = DH_RF(2:5,1);

DH_RR = DH(q(:,2));
q_RR = DH_RR(2:5,1);

DH_LF = DH(q(:,3));
q_LF = DH_LF(2:5,1);

DH_LR = DH(q(:,4));
q_LR = DH_LR(2:5,1);

300

q1 = [q_RF, q_RR, q_LF, q_LR];

%---------------------------------------

Conf_0.m

function Configuration = Conf_0()

%---------- Right Side -------------------
theta_1R = 0;
theta_2R = 0;

theta_3RF = -pi/4;
theta_3RR = pi/4;

theta_4R = 0;

%---------- Left Side --------------------
theta_1L = 0;
theta_2L = 0;

theta_3LF = pi/4;
theta_3LR = -pi/4;

theta_4L = 0;
%--

% theta_1, theta_2, theta3, theta_4
Configuration_RF = [theta_1R theta_2R theta_3RF theta_4R]';
Configuration_RR = [theta_1R theta_2R theta_3RR theta_4R]';
Configuration_LF = [theta_1L theta_2L theta_3LF theta_4L]';
Configuration_LR = [theta_1L theta_2L theta_3LR theta_4L]';

% RF Leg RR Leg, LF Leg, LR Leg
Configuration = [Configuration_RF Configuration_RR Configuration_LF Configuration_LR];

