BIRZEIT UNIVERSITY

FACULTY OF GRADUATE STUDIES

“Dynamics and Stability of Rover”

By
Muhannad M. Abdo

Submitted in partial fulfillment of the requirements for the
Master Degree in Scientific Computing from the Faculty of

Graduate Studies at Birzeit University

Supervised by
Dr. Hassan A. Shibly

Birzeit, Palestine,

June &, 2006



“Dynamics and Stability of Rover”
By
Muhannad M. Abdo

This thesis was successfully defended on June 8, 2006 and

approved by:
Committee Members Signature
. Dr. Hassan Shibly == =
2. Dr. Karim Tahboub - o

- - %,
3. Dr. Mohammad Salh o CV('/’A



Abstract

Today’s stability criteria are not capable for providing a precise definition and
precaution suited for a mobile robot: traversing on unpredictable surface, exerting
manipulation forces and torques, susceptible for variable ground normal forces, or
subjecting to attitude orientations. Thus, this research firstly examined the dynamic effects of
mobile robot traversing on different surface geometries with variable configurations and
attitudes, and it secondly investigated their impact on the normal forces distribution. Finally,
it reflected the influences of these factors on the dynamic stability of the rover in order to
protect the rover from tumbling. This study presents a new dynamic stability criterion done
on a new mechanical structure; quadruped mobile robot equipped with wheels and legs

called rover.

The primary contribution of this thesis is exploiting the Denavit-Hartenburg
approach for assigning the coordinate frames at link’s end-terminals, and then relating
between each two adjacent frames by forming homogeneous transformation matrix.
Forward kinematics is exploited to relate the end-effectors (four wheels) with base frame
(platform). The platform attitudes (Roll, Pitch, and Yaw) are evaluated in relative to
proposed universal frame at the center of platform. The coordination between locomotion

(wheels’ motion) and manipulation (joints’ motion) is clearly defined.

In this work, the dynamic equations of motion are driven by using Newton-Euler
Recursive Relations. The kinematics of links (velocities and accelerations) are propagated in
forward recursion starting from base frame and ending at the four end-effectors, link by link.
As well as, the dynamics of links (generalized forces and moments) are propagated in
backward recursion starting from four end-effectors frame and ending at base frame, link by

link. The force and moment propagated into a base link (platform) are determined as a
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function of gravity forces, inertial forces, inertial toques exerted on the center of mass of

links, and ground normal forces exerted on the end-effectors.

The equations of equilibrium for four legs are considered indeterminate system, thus
in this thesis the normal forces are evaluated for three contact legs in the case the non-
symmetric rover. However, in the case of symmetric configurations the normal forces are
distributed equally between the sides which sharing the same the inertial forces, ground
geometries, and platform attitude. Thus regarding to symmetric four legs are evaluated by

considering two legs sharing the same value.

A new dynamic stability criterion is presented for rover in this thesis, and it is
operating on various shapes of surfaces, and variable rover configurations. In addition, this
criterion provides on-line calculations for the effect of variable rover configurations, various
surface geometry, platform attitudes, kinematic values, dynamic effects, and variable ground

normal forces. The on-line calculations are referred relatively to the universal frame.

The simulation model is also presented for various examples using Matlab in order
to provide on-line calculations for predicting the behavior of a physical system under a

variety of surface geometries and rover configurations.

Keywords: mobile robots, center of mass, static and dynamic stability margin, forward and
inverse kinematics, forward and backward dynamics, wheeled-legged manipulator, uneven
terrain, inertial forces and moments, inertial acceleration, normal and frictional forces,

Newton-Euler Recursive Relations.
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Abbreviations

DH Denavit-Hartenburg

RCF right conjunctional frame
LCF left conjunctional frame
RDF right disjunctional frame
LDF left disjunctional frame

RFS right front shoulder

RRS right rear shoulder

LFS left front shoulder

LRS left right shoulder

K front or rear chosen under a certain conditions
RKIS right front/rear input system
LKIS left front/rear input system

GCP ground contact point

Coordinate frames

O frame

Oy  universal frame
Op  base frame

Opr  right base frame

Ogr.  left base frame
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Ousrr
Osrr
Ourr
OuLr
Owrr
Owrr
OwLr
OwLr
Osrr
Osrr
OsLr
OsLr

right conjunctional frame
left conjunctional frame
right disjunctional frame

left disjunctional frame

locomotive wheel frame of right front leg

locomotive wheel frame of right rear leg
locomotive wheel frame of left front leg
locomotive wheel frame of left rear leg
end-effector frame of right front leg
end-effector frame of right rear leg
end-effector frame of left front leg
end-effector frame of left rear leg

wheel universal frame of right front leg
wheel universal frame of right rear leg
wheel universal frame of left front leg
wheel universal frame of left rear leg
surface frame of right front leg

surface frame of right rear leg

surface frame of left front leg

surface frame of left rear leg

ground universal frame
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Drawings

@D axis is pointing in the paper

®  axis is pointing out the paper

. indicates that the wheel is in contact with ground.

o indicates that the wheel is not in contact with ground.
> means that the leg is in contact with ground.

o means that the leg is not in contact with ground.

Variables and constant

A homogeneous transformation

B generalized homogeneous transformation matrix
q generalized coordinate

0 variable joint

o} twist angle

n normal vector

0 orientation vector

a approach vector

p position vector

r'  position vector from frame i to frame i-1

d; link offset of link 1.
a; link length of link 1.
m; mass of link 1.

m total mass of the rover
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TERMINOLOGIES

Manipulator robot: is a set of links connected with joints that executes a set
of manipulations via joints and links, while the base link is fixed by stationary
pillar.

Manipulation: is the movement of robot’s components with respect a fixed
base frame.

Mobile robot: executes a set of manipulations and locomotions during the
travel, while the base link moves.

Locomotion: is the movement of the base frame with respect the universal
frame as resulted of the movement of the locomotive device. This process
requires scientific and accurate coordination between base link, robot’s
components, and the geometry of the ground.

Base link: is considered the first device of the four legged manipulators, it is
not bolted with stationary pillar as Stanford, Screw, Puma, etc. Therefore, it is
influenced by the configurations of the four legs, the geometry of the ground,
as well as the generalized forces acting on the end-effectors.

End-effector link: is the last link that interacts on the surrounding
environment. Its functionality integrates the manipulation and the locomotion
using finger, arm, leg or wheel. In this thesis, there are four end-effectors, i.e.
four wheels.

Kinematics: is concerned with study of motion of robot (i.e. displacements,
velocities, and accelerations of links) regardless the forces that cause these

motions.
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Forward kinematics: is the study of position and orientation of the end-
effector as a function of the joint angles, in forward manner starting from base
to end-effector.

Inverse kinematics: is a study of the joint angles as a function of position and
orientation of the end-effector.

Dynamics: is concern with study of forces and moments (i.e. normal forces,
gravity forces, and inertial forces and moments) that cause the motion without
regard to the displacements, velocities, and accelerations.

Forward dynamics: is the derivation of kinematics from forces and moments
starting from platform and ending at wheel, link by link.

Inverse dynamics: is the derivation of forces and moments from the
kinematics starting from wheel and ending at platform, link by link.

Stability criterion: is a concept or a technique made to prevent the robot from
turning over.

Static stability: is a study concerns in mobile robot moving with zero or
constant velocity (acceleration = zero) in the absence of inertial forces, under
the effect of ground geometries, normal forces exerted on end-effectors, and
gravity forces exerted on center of masses of links. It discusses the support
polygon where the line of gravity will fall inside. Thus, the mechanical system is
more stable and comfortable with using more legs.

Dynamic stability: is the study that concerns in mobile robot moving with
regularly linear velocity (constant acceleration). The additional effects added to

static case are the influences of frictional forces, and inertial forces and torques
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acting on center of masses of links. This study requires arduous control and
numerical computations in order to achieve on-line calculations.

Center of mass: is a single point around which the total mass of the rover is
balanced in all direction.

Support polygon: is the polygon area delimited by the projections of
supported legs onto horizontal plane.

Ground contact points: are the numbers of landing legs on the surface.
Generalized coordinates: are used to describe the geometric configurations
or the degrees of freedom for mechanical system.

Generalized forces: are the forces and moments acting by actuator on joints

in the direction of the generalized coordinates.
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Chapter One

1. Introduction

Mobile robots play a major role in development of our real life in
different areas. In the wake of the growing speed of technologies and
explorations, the human beings face challenges to accomplish specific missions
in dangerous environments safely in meaningful and purposeful manner. For
example, the explorations taken place inside volcanoes [1], nuclear reactors [2],
mining fields [3], construction and forestry industries [4], or planetary missions
[5, 6]. Those missions confront arduous processes and endanger the workers’
life to reach over a forbidden location entries. In fact, those explorations are
highly in need of replacement of direct human intervention with accessible
mobile machines, which achieve incorporation between the manipulation and
locomotion automatically. Therefore, countless efforts [7, 8, 9, 10, 11] have
been focused on autonomous mobile robots in order to avoid the human

operators from the dangerous environment.
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Since 1960 [12], there have been a growing international interests in the
Mars exploration where the absence of life assurance. The scientists [13, 14]
have interested in Martian surface geology, topology, mineralogy, morphology,
geochemistry, and atmospheric environment. Indeed, they have drawn the
wortld’s attention for three main necessities throughout exploring those Martian
properties and characteristics: in order to make sure of the probability of last-
present life existence, understand the climate history, and search for what
resources can be benefited from over there. However, the indirect contact of
scientists with Mars from earth throughout telecommunication systems yields
uncompleted results. This reason has enforced the scientists’ needs directing
toward mobile robot capable for gaining sufficient amount of samples of sands
and rocks and subjecting these samples under tests and experiments on the
earth. Therefore, the planetary scientists have opened their eyes on the use of
small mobile robots since 1996 [15, 16], which are capable for traversing
random Martian terrain stably and smoothly for longer traverses and time. This
mission requires studies for: firstly, an efficient mechanical structure. Secondly,
effective dynamic stability criterion. Thirdly, mathematical analysis and
simulation for kinematics and dynamics in computational manner. Fourthly,

surface geometry and its dynamic disturbances.



1.1. Mechanical structures for mobile robots

The first micro-rover, named Sojourner [14], was launched aboard the
Mars Pathfinder spacecraft in 1996 and landed on Mars in July 4, 1997 [17], see
Figure 1.1. However, the Sojourner was designed for a very limited mission
distance and time; it traversed 100 meters as a total distance during its elapsed

time “83 sol” over there, while the average speed was 2.7 meters per traverse

day [17, 18].

b. Sojourner rover roamed on the Martian surface.

Figure 1.1. Mars Pathfinder mission settled on Ares Vallis on July 4, 1997 [17].
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In 2003, NASA's Mars Exploration Rover mission sent two identical
six-wheeled mobile robots; the first was named Spirit and the second was
named Opportunity. The Spirit and Opportunity landed on opposite sides on
the surface of Mars and completed the mission in January 2004 [16]. They both
can move on terrain with five centimeters per second as top speed, and can
traverse 40 meters in Martian daytime, and the mission life was no more than
90 days and 1000 meter as total distance [19]. Robotic arm was attached on

platform for testing Martian rocks and soil as shown Figure 1.2.

Figure 1.2. Spirit and opportunity robot [19].

However, the previous traditional rovers have maintained stable in short
traverses and time, with slow and constant velocity, and in relatively benign
terrain [20] due to their inheritance of same mechanical characteristics, ignoring
rover kinematics and dynamics, neglecting the idea of existing of inertial effects

and unpredictable environments, imposing quasi-static motion, and disability to



define precise static and dynamic stability criterion capable for functioning in
all rover mechanical structures and surface geometries. In future Mars
exploration missions, there will highly be interests for autonomous mobile
robots that will broaden the range of exploration for long distance and time in

challenging terrain and obstacles more than encountered by previous rovers

[14, 21, 22].

Therefore, this work evades the idea of adopting any one of the past
mechanical characteristics, and it started from scratch in creating a new
mechanical model composed of four manipulator wheeled-legs sharing the
same platform as moving base link. The presented rover should maintain
statically and dynamically stable during the locomotion to accomplish Mars
mission. This is also the main issue in which this work treated and focused in

computational manner.

This work exhibits a new mechanical design for a quadruped mobile
robot. The four identical wheeled legs are gaining high level coordination
between manipulation and locomotion in various aspects, because the four legs

share symmetric mechanism and coordinate frames. The design here executes a



6

set of manipulations and locomotions integrated at the same time in
algorithmatic control for providing the dynamic stability. This feature
contributes in increasing the rover speed stably and smoothly on uneven

terrain.

1.1.1. Manipulation system

The rover is simply composed of common platform connected with four
wheeled-legged manipulators by differential joint. Notations are distributed on
right side, left side, front side, and rear side. Each wheeled-legged manipulator
connected with common platform will be represented as right front leg, right
rear leg, left front leg, and left rear leg, as shown in Figure 1.3. Each leg is
considered as a combination of five links and four joints, starting from
platform base link 0, and ended with end-effector link 4. The right side and left
side share the differential joint, joint 1, mounted above the mobile platform. At
the edge of platform in each side, each two legs share the joint 2 and it is
named conjunctional joint. Joint 3 divides those for two independent legs, i.e.
front shoulder and rear shoulder. Finally, Joint 4 connects the locomotive
wheel. The revolute joints are utilized here for controlling the mobility and

posture of the rover. Furthermore, the joints enable the end-effectors to select
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the footholds on ground, control the distributions of ground normal forces,

and delimit the area of support polygon.

LCJ
NI

Left side

Rear view

Differential
joint

LF wheel
Front view

RR wheel

RF wheel

Figure 1.3. Rover components composed of four wheeled-legged manipulators.

The first joint, differential joint, rotates around the lateral axis of the
universal axis. The second joint, conjunctional joint, rotates around the
longitudinal axis of the platform edge. The third joint, disjunctional joint,
rotates around the lateral axis of the platform edge. Finally, a wheel is
connected by the fourth joint to provide protection from tipping onto its side

and to propel the entire rover on ground.
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Each wheel is equipped with DC motor for the actuating motion. The
rover has no breaking system, but the motors provide the feature of self-
locking system; so that if the motors of the four wheels are locked, the rover

will stop.

The number of degrees of freedom of each leg depends on the number
of joints in the rover. Usually in robotics science, each joint provides one
degree of freedom either for revolute or prismatic motion, unlike human joints.
Moreover, the platform will be susceptible to a sequence of changes in
configurations during the motion, while this mobility of platform will provide
the system with three degrees of freedom, ie. three (¢,0,y) related to

orientation of the platform represented in roll, pitch, and yaw.

The rover overall weighs was chosen to be 12kg, which is distributed
such that the platform weighs approximately 4kg, m;= 1lkg, m,= 0 (by
approximation), m3= lkg, and my (wheel) weighs= 0.5kg. The length and the
width of the platform respectively are 60cm and 40cm. The length of the each
shoulder (link 3) is 40cm. The inner and outer radii of each wheel are 3 cm and

5cm, respectively.



1.1.2. Locomotion system

The locomotion of mobile robot is defined as the movement of the
whole robot on the ground by employing either wheels or/and legs. Most
mobile robots use the wheels, which are easier to control and manoeuvre,
maintain stable, consume less energy, and move faster than legs on an even
terrain. However, the wheels cannot operate on uneven terrain efficiently,
because the wheels diameters have to be larger than the obstacles to overcome
and the rolling contact of such rovers on uneven terrain are susceptible to
complex wheeled-ground interactions [23] with the physical soil properties:
rocks distribution, friction characteristics and soft terrain. In addition, the
heavy-wheels or their payload may plow the soft terrain causing friction forces
and terrain damage thwarting the whole mission. Look at the practical

prototypes as in SOLERO [24], and CEDRA [25].

In contrast, the legs are capable to select footholds above discontinuous
ground, in which benefits the locomotion to traverse on an uneven terrain, that
comprises the capability of avoiding the obstacles and holes, walking up and
down the steps, overcoming the soft ground sinking and causing less terrain

damages, and controlling the distribution of forces. In addition, the positive
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advantage of legs can add that they are omnidirectional, as it can provide for
directional movements forward, backward, sideways, or turn on the spot as
shown through the quadruped robot WARP1 [26]. However, legged mobiles
have many degrees of freedom that make it difficult to design and control.
Moreover, they are relatively slow speed and energy inefficient. In addition, at
least six legs are required for static walking, while three wheels are required for
static rolling. The practical examples on this type are Quadruped Aibo ERS-210

robot [27], WARP1 [26], TITAN VIII [28] or SILOG6 [3].

Therefore, the mobile robot will be much more productive if it is
equipped with legs and wheels to over come the most challenges mentioned
previously. These wheeled-legged properties mentioned above were implied
from practical experiences taken place in several mobile robots; for example in

the case of Sojourner, Spirit, Opportunity, or Rocky 7 [29].

This thesis inherits the advantages and eliminates the drawbacks of both
legged and wheeled locomotion in computational manner, for being equipped
with four wheeled-legged manipulators. Thus, the platform a base link will

smoothly rotate in relative to configurations of four wheeled-legged
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manipulators and surface geometries. In addition, the presented rover will
overcome obstacles, traverse uneven terrain at higher velocity in stable form
and with less power consumption. Furthermore, it will provide a reliable
passive mechanism for supporting the weight of the rover at inclined surface.

In addition, it can locomot forward, backward, and sideways.

This rover executes a set of manipulations and locomotions during the
travel. The supported legs of rover will be susceptible for discrete changes
when the legs are lifted or placed on variable surface geometries. This yield a
change on rover attitude with respect to universal frame, because the body’s
attitude is influenced by configurations of joints and surface geometries
subjected on the supported wheeled. These kinds of control, irrespective of
manipulation or locomotion, are required a computational stability measured
criterion that maintains the rover stable with different terrain types. However,
till now there is no precise static and dynamic criterion that can be common for
all different mechnical structures and surface geometries. The loss of stability

may lead to tipping over and then the mission will fail completely.
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1.2. Stability criterion

Generally, stability is defined as the tendency of a robot to return to its
original equilibrium state after being influenced by a disturbance. This work
studies the stability of rover on the surface of Mars throughout overcoming any
perturbation that could enforce the rover to turn over. Many scientific authors
have dealt with specific definition which states that the turnover occurs when
the center of mass of rover undergoes a rotation about one of its edges of
support polygon. This rotation yields a reduction in the number of ground
contact points and a decrease in the boundary of the support polygon. The
remaining contact points will finally lie on a single line as axis of rotation.
Moreover, the moment acting around this single edge of support polygon could
enforce the rover to tumble making the system statically unstable. These
sentences have been formulated mathematically in order to relate the
geometrical shape of the ground directly with the manipulation and locomotion

of the rover.

There are two general classifications for rover stability; namely static
stability and dynamic stability. In 1968, McGhee and Frank were the first who

put forward the static stability criterion for an ideal machine moving at slow
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and constant speed on even terrain. In 1976, Orin et. al were the first who
proposed dynamic stability criterion on the presence of inertial forces. Later,
several researchers have either extended the previous criteria or proposed new
stability criteria for both static and dynamic. Unfortunately, different
applications may require different stability margin criteria. Even if the stability
criterion is better evaluated, the mechanism of rover will be optimized in order
to cope with different terrain situations [30]. Thus, the criteria founded before
were insufficient to remain the most rovers upright or stable [31]. In any way, it
should be necessary to pay attention for the definitions for both static and

dynamic systems, and the previous criteria done in previous works.

1.2.1. Static stability margin

The static stability was traditionally determined by the support polygon
and the projection of the center of mass. These two parameters can formulate a
simple definition for static stability: “occurs when center of mass is above the
support polygon regardless of the effect of inertial and normal forces”.
However, this requires computational control for the legged configuration,
ground elevations, ground contact points, and the body attitude. The legged
configuration [26] studies the sequence and time in which the legs are lifted and

placed in ground and in which joint angles are manipulated. The ground
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contact points, which delimit the support polygon, are chosen by the landing
legs on ground. The ground elevation is the input system at each supported

wheel.

Conditionally, the minimum requirements demanded for static stability
are three legs on contact with the ground, forming the support polygon at all
the times. The static stability requirements must enable the vertical projection
of the center of mass to be inside the boundary of the support polygon.
Otherwise, there will be moment acting around an edge of support pattern that

could enforce the rover to tumble, making the system statically unstable.

Tricycle has three contact points on the ground, and the boundary of
support polygon is delimited in a triangle area connecting the three contact
points. If the vertical projection of center of mass is fallen inside the boundary
of the support polygon, then the tricycle is characterized statically stable for
keeping itself upright. In contrast, Bicycle has two contact points on the
ground, and the boundary of support polygon is restricted in a single line

connecting the two contact points, and the center of mass is either above or
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outside the line. Thus, the bicycle is always characterized statically unstable and

cannot keep itself upright at rest or constant speed.

The requirements for static stability mentioned above have been
formulated since 1968 in different theorems and for variant mechanisms by
several researchers. They have provided an indication for the probability of
better static stability by keeping the vertical projection of the center of mass at
the middle of support polygon. So that, they have designed the mobile robots

with big boundary of support polygon and low height of the center of mass.

1.2.2. Previous work on static stability

McGhee and Frank [32] were the first who introduced the idea of Static
Stability Margin criterion, based on an ideal insect locomotion system. They
defined it as the shortest horizontal distance from the vertical projection of the
center of gravity to the nearest border of the support pattern formed by the
contact points of legs with ground, called horizontal support polygon. If the
ideal machine is statically stable, the margin will be positive. Otherwise, it will

be negative. As shown in Figure 1.4, the black circle indicates for supported
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leg and white circle indicates for not contacted legs with the ground. The

static stability margin of a. is positive, and of b. negative.

| i L Q-
Ls I | L,
—o , TR
Ly i 0 L 0L,
a. Statically Stable b. Statically Unstable

Figure 1.4.Top view shows the support polygon and pattern onto horizontal plane.

However, McGhee et al dealt with a rigid body with mass-less legs
moving in a straight line, on an even terrain, and in steady-state constant speed
locomotion. In addition, this criterion is geometric and independent of the
height of center of mass. Moreover, it does not encompass kinematic

configurations, dynamic effects or normal forces [30].

Messuri and Klein [33] proposed Energy Stability Margin for rough
terrain, which evaluates the minimum potential energy or work needed for
turning the center of mass of the mobile robot around the edge of the support
polygon. In other words, during the rotation of the center of mass on a circular
path around the edge, this criterion measures the vertical distance between the

maximum height of center of mass at a critical point above the edge and the
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current height of center of mass multiplying with the weight of the mobile

robot as shown in Figure 1.5.

NC
ESM = min (mg(h,, -h))

Horizontal Plane

Figure 1.5. Energy Stability Margin

Nagy et al [34] extended the Energy Stability criterion to Compliant
Energy Stability Margin to overcome the foot sinkage on compliant terrain.
However, the stability margin, which takes into energy consideration, is an
inaccurate measure because it changes with respect to the weight of mobile
robot at the same posture, i.e. it maximizes the probability of stability for the
heavier robot at same posture. Hirose, et al [35][36] eliminated the effect of the
weight making the margin in dimensional-length expression by normalizing the

Energy Stability Margin to the weight of mobile robot.

However, the static stability does not deal with conditions when the rover

is subjected to the inertial forces and moments and ground normal forces [31].
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Thus, the static stability can prove its functionality in the case of mass-less legs
with imposing limitations on rover’s motion by keeping it moves at slow and
constant speed to resist the inertial effect [37]. When the moving mobile robot
possesses considerable mass legs, the stability must be defined in the dynamic
approach. The current efforts of researchers have concentrated on the
confrontation of these dynamic effects that can restrict the stability of mobile
robots and mission performance during the motion on the base of dynamic

stability principle.

1.2.3. Dynamic stability margin

The mobile robot must meet the conditions for dynamic stability
throughout accelerated motion with taking into consideration the high effects
of the inertial forces and moments, dynamics disturbances from irregular
terrain, and variable normal and frictional forces. The dynamically stable rover
is considered faster than in the case of statically stable form. Support polygon,
legged configurations, center of mass projection, inertial forces and moments,
accelerated motion, frictional forces, and normal forces were traditionally
considered the main parameters for dynamic stability. As noted previously, the
dynamic stability provides more comprehensive definition as if the static study

is a part of dynamics. However, the rover may be dynamically stable without
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being statically stable or vice versa, i.e. the moving bicycle is dynamically stable,
since it easy to remain upright and hard to flip during accelerated motion; and it
is statically unstable in the roll direction, since it cannot remain upright at rest

or slow motions.

1.2.4. Previous work on dynamic stability

Orin et al [38] provided the first dynamic stability margin called Center
of Pressure for a six-legged robot vehicle as an extension for center of mass
projection idea. This criterion states that a mobile robot is dynamically stable if
the projection of the center of mass along the direction of the resultant force

remains inside the boundaries of the support polygon.

Vukobratovic and his colleagues [39] proposed Zero Moment Point
criterion, which is helpful for biped locomotion only on an even and flat
terrain. In any way, this criterion claims the dynamically stability for the rover if
the ZMP remains inside the boundary of the support polygon. Zero Moment
Mass relies on the concept that states the sum of all forces and the sum of all

moments of the rover body on the support polygon are equal to zero.
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Kang and his colleagues [40] proposed Effective Mass Center based on
Zero Moment Mass for a quadruped-walking robot subjected to external
forces. They have claimed that the effect of external forces on the real center of
mass yields deviation of ZMP from the real center of mass called effective mass
center. For finding the walking robot stability, this deviated point can be
considered as the real center of mass as if there are no external forces. Thus,
the dynamic stability of the quadruped robot can be conventionally found if
this point is located inside the support polygon. They attached force sensors to
each leg’s tip of the quadruped-walking robot in order to find the reaction
forces then directly in mathematical equation they substituted these values to
evaluate this deviation. However, this criterion is invalid in uneven terrain [31,

23]

Lin and Song [41] proposed Dynamic Stability Margin, which is defined
as the smallest of resultant moments around edges of axes of rotation, due to
normal forces, gravitational forces, and inertial forces and moment acting on
center of mass, normalized by the total weight of the system. The positive

moment explicitly counteracts the occurrence of instability otherwise the rover
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will turn over. However as a result of normalizing the moment by weight; this

criterion implicitly conducts the unit of length that should remain positive.

Yoneda and Hirose [42, 23] proposed Tumble Stability Criterion for
mass-less legs. This criterion investigates for the mobile robot’s stability when
all legs become without contact with the ground except two legs forming two
ground contact points as a line segment, and the mobile robot will start to
tumble by rotating around the single line segment. They claimed that there
must be a supporting force for any non-contact point capable for overcoming
the tumbling. Furthermore, it evaluates the absolute value of the moment
around the rotation axis divided by its weight, which generates around the line
segment to withstand the tumbling. This stability criterion is evaluated not only
on ground surface, but also on wall and ceiling surfaces in which these surfaces
will provide the support forces for legs of the mobile robot. However, it does
not take into the consideration of dynamic effects of legged motions when the

legs are considerable masses.

Zhou [43] proposed Leg-End Supporting Moment, which is defined

similar as previous criteria as the leg-end supporting moment divided by the
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weight of the mobile robot. If the moment is greater than zero, the mobile
robot will remain in stable state. They used the internal robot sensors for

finding forces and distances online to have precise measurements.

Papadopoulos and Rey [44, 45] proposed Force-Angle stability measure,
which evaluates minimum angle between the net force vector acting on the
center of mass and each of the tipover axis normals. The mobile robot is in
critical stability when this angle approaches to zero. The zero angle takes place
at the time the net force becomes coplanar with any tipover axis normals, or
when the net force becomes zero. This criterion shows that the mobile robot’s
instability takes place if the net force vector directs outside any one of tipover
axis normals. Therefore, this criterion takes geometric measure into
consideration, and it is sensitive to the effect of center of mass height, whereas
the raising of the center of mass height will minimize the probability of keeping
the mobile robot in stable situation. Furthermore, they claimed that it operates
on uneven terrain because the support pattern, formed by ground contact
points, is not restricted in a horizontal plane. However, Garcia [46, 47] proved
throughout experiments that this criterion has poor accuracy when

manipulation effects arise during walking over an uneven terrain.
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Ghasempoor and Sepheri [48] proposed Dynamic Energy Stability
Margin. They take into consideration the dynamic effects to the Energy
Stability Margin including the inertial and normal forces that encountered

during the motion of the mobile robot on rugged terrain.

Garcia and Gonzalez [47] improved the Energy stability Margin to
Normalized Dynamic Energy Stability Margin for walking machines. This
criterion is defined as the smallest of the stability levels required to tumble the
robot around the support polygon, normalized to the robot weight.
Furthermore, it shows that the walking machines can remain dynamically stable
during motions under dynamic effects if each momentum around its edge of
support polygon, generated from robot-ground forces and moments, is positive
or in the clockwise direction. It is considered the optimal accuracy from the

energy point of view.

However, the stability conditions mentioned above are not adequate to
guarantee the safty for whole mobile robots from turnover. If optimum
criterion is defined, the robot manipulation and locomotion can also be

optimized. Beside, random surface types can be faced and it should be aware of
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variable normal forces that can suddenly appear and effect on the rover
stability, because dynamic disturbances at the wheels generate large moment
about the platform link expressed in universal frame, tending to rotate the
mobile robot and losing its stability. The net moment that is capable for
rotating the rover, which is resulted from the normal forces acted at wheels,
gravity forces, inertial forces and torques exerted on the center of mass of each
link, must be decomposed, studied in on-line approach, and defined as
threshold limits. This requires on-line simulation for the changing occurred in
rover kinematics, dynamics, configurations, and attitude. Thus, this thesis
exhibits a new stability measure criterion that is sufficient for mobile robots in
different surface geometries and configurations: “If the universal moment
equals the critical moments, the rover will undergo to angular motion and lose
its stability”. The critical moment is the required moment to lose one side’s
connections with ground and rotate the rover about the opposite side. The
stability measure criterion will be evaluated under the dynamic stability
consideration for new-manufactured prototype composed of four wheeled-
legged manipulators and can be generalized and common used for whole

mechanical structured.
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1.3. Computational kinematics and dynamics

The rigid multibody system only consists of rigid links connected by
actuators. To analyze and simulate the kinematics and dynamics of this system,
it is necessary to study the relative motion, torques, and forces between the
links. During the past researches on dynamics, the robotic system that consists
of relatively small numbers of joints was analyzed using graphical and hand
calculations. However, the mobile robot that consists of large number of joints
and carries variable load will negatively effect on the joint motions, in such a
way, the joint’s speed either decreases or increases along a planned path. The
dynamic characteristics for the manipulators are highly nonlinear system with
respect to the number of links. It is highly recommended to make the
calculation on-line, therefore it is required driving all its joints accurately and
frequently at a sampling frequency higher than 60 Hz [49] for the Stanford arm
[50], because the resonant frequency of most of the mechanical manipulators
are around 10 Hz [49, 51, 52]. The advent of high-speed computers and
computational methods has made it possible to analyze complex dynamic

systems.
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The computation proves itself efficiently when the amount of
computation increases linearly with respect to the number of links, and the

sampling frequency is higher than 60 Hz.

The joint space equations of motion can be driven via different
approaches; i.e. Free Body Diagram, Lagrange equation, D’Alembert principle,
Newton-Euler formulation, Hamilton principle, Gibbs Appell formulation and
so on. The Free Body approach [53] is easiest approach for no more than two
links. It draws a free body diagram of a certain manipulator including: all
external forces by environment, weight exerted by the earth as attraction on the
center of gravity of the body, ground reactions on supports, as well as the
contact forces exerted by attached bodies on connections. However, the
computation for equations of motion will be arduous process for manipulator
with three or more links by using the Free Body diagram, because each link
must be described to its preceding link successively while the entire system of
free bodies is described in the frame work of “inertial coordinates” [49].
Therefore, the scientific researchers have focused the attention in development
of advanced approach capable for treating the daily development of robotic

mechanism and the increase of the number of links. The Lagrangian approach
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[54] is an energy based formulation, since the equations of motion are firstly
obtained by finding the kinetic and potential energies of the system, and then
substituting these two results in Lagrange’s equation (. = T - V). The
Recursive Newton-Euler [55] is deal with kinematics and dynamics properties,
since the equations of motion are firstly obtained by propagating the velocities
and accelerations in forward recursion, and then propagating the input

generalized forces in backward recursion.

The equations of motion of robotic manipulator are typically computed
via applying either the Lagrange or the recursive Newton-Euler formulation. So
a lot of researches have extended new versions for the both approaches. The
comparison between two approaches can be inspired from computational
complexity, execution time, symbolic simplicity, numeric manner, and accurate
result. The Lagrange approach firstly consumed long execution time with
complexity O(n") caused by Coriolis and Centrifugal force. Thus, the
approximation was an improvement technique by ignoring Coriolis and
Centrifugal forces and making the complexity reduced to O(n’) caused by

acceleration term. Armstrong [56] put forward the role of recursion in the
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complexity reduction to O(n), and then a lot of reseatches have been relied on

him.

In 1965, Uicker [54] was the first who introduced the Lagrange
equations with high complexity O(n*). Then in 1969, Kahn [57] extended it for
spatial open chain system using 4X4 homogeneous transformations with
computational complexity O(n’). After that in 1976, Stepanenko and
Vukobratovic [55] introduced the Newton-Euler equations for spatial open
chains where each component is referred to base inertial frame with
complexity O(n’). In addition in 1980, Luh, Walker and Paul [51] reduced the
complexity of the Newton-Euler Method to O(n) by using recursive
formulation, and considering each link’s dynamic referenced to its own link
coordinates or local coordinate system using 3X3 homogeneous
transformation. In 1980, Hollerback [58] extended the Kahn’s effort and
succeeded in reducing the complexity of Lagrange’s approach from O(n’) to
O(n) by using recursive formulation in Lagrang. However, Silver [59] in 1982
proved that there is no difference between what were developed in these two

approaches, Recursive Newton-Euler formulation and Lagrange approach.
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The Lagrangian equations are considered most explicit for formulating
the equations of motion symbolically, whilst the Newton-Euler is considered
most efficient in formulating the dynamic equations numerically and
computationally [60]. For example in order to compute all input generalized
forces, the authors in [49] reduces the average execution time from 7.9 second
via Lagrange approach to 0.0335 second via Newton Euler Recursive
formulation using the same program and manipulators (FORTRAN program,
and a Stanford manipulator arm using six joints, seven links and a gripper).
However, the both approaches cannot be implemented practically on-line,
since the sample frequency is less than 60 Hz, until the author rewrote the
entire algorithm in assembly language and he reduced the time to 4.5
millisecond, therefore this execution time enable recursive Euler-Newton

formulation to be applied online.

Walker and Orin [61, 62] extended the work of Luh ¢/ @/ and made
application of the recursive Newton-Euler formulation explicit with less
execution time. They formulated the equations of motion in explicit form in
comparison with others; simply it will yield a set of recursive equations, which

can be applied to the links sequentially to compute the generalized forces
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referenced in their own coordinates in a short period of time or in on-line
control. This is the approach which thesis will recommend and base in

calculations for computing the equation of motion.

In this work, the equations of motion are driven by using Newton-Euler
Recursive Formulations. The kinematics of links (velocities and accelerations)
are propagated in forward recursion started from base frame and ending at the
four end-effectors, link by link. As well as, the dynamics of links (generalized
forces and moments) are propagated in backward recursion started from four
end-effectors frame and ending at base frame, link by link. The rover base is a
driven link, and it moves as a result on the configurations of the four
manipulators and ground elevation. However, The Newton-Euler Recursive
Formulations were formulated and applied for wvarious fixed robotic
manufactures as Puma 560, Elbow, and Standford manipulators; where the
main platform of the pervious systems is fastened with stationary pillar without
being under motion and its coordinate frame is considered as universal frame.
The utilization of the Newton-Euler Recursive Formulations directly is
incorrect in regarding to mobile robot without taking the platform motion into

account. The platform attitudes (roll, pitch, and yaw) with respect to the
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universal frame will also be taken into account as a function of rover
configurations and surface geometries. In addition, the kinematic values
(position, velocity, and acceleration) of the platform link will be compensated

in equations of motion with respect the kinematics of wheels.

However, the previous works have considered the whole components of
mobile robot as rigid body concentrated in center of mass. But, this work dealt
with the kinematics and dynamics of each link apart, and relate between links in
recursive approach, which can be applied to the links sequentially to compute
the kinematics and dynamics referenced in their own coordinates in a short

period of time and in on-line control.

This work exploits Denavit-Hartenburg convention to assign the
coordinate frames. Besides, homogeneous transformation matrix will relate
between each two adjacent coordinate frames starting from base and ending at
four end-effectors. Moreover, forward kinematics will directly relate the base
frame to the end-effectors. Plus, the roll, pitch and yaw angles are unknown
variables and they are functions of system configurations and ground

geometries. As well as, The homogeneous transformations of surface frame
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(contact point) with respect to wheel frame of each end-effector will also be

computed as functions of joint configurations and ground geometries.

Because four legs are considered indeterminate system, in this thesis the
normal forces are evaluated for three contact legs in the case the non-
symmetric rover. However, in the case of symmetric configurations the normal
forces are distributed equally between the sides which sharing the same the
inertial forces, ground geometries, and platform attitude. Thus, regarding to
four legs the normal forces are evaluated by considering each two legs sharing

the same value.

A new dynamic stability criterion is presented and operating arbitrary on
various shapes of surfaces, and variable rover configurations. In addition, this
criterion provides on-line calculations for the effect of rover configurations,
various surface geometries, platform attitudes, kinematic values, dynamic

effects, and variable ground normal forces.
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Chapter Two

2. Kinematics of the rover

In this chapter the coordinate frames will be assigned by using Denavit-
Hartenburg convention “DH”, and then DH parameters will be specified
between each two adjacent frames. Besides, this chapter will relate between
each two adjacent coordinate frames using homogeneous transformation
matrix starting from base and ending at end-effectors. Moreover, we will
directly relate the base frame to the end-effectors throughout a forward
kinematics. The forward kinematics provides us the position and the
orientation of the end-effectors with respect to the base frame as a function of
joint configurations. After all, the platform attitude will be specified with
respect to universal frame through roll, pitch, and yaw orientations. However,
the roll, pitch and yaw angles are unknown variables and they are functions of
system configurations and ground geometries. Therefore, we will integrate the

work mentioned above for finding the attitude angles.
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The homogeneous transformations of surface frame (contact point) with
respect to wheel frame of each end-effector will also be computed as functions

of joint configurations and ground geometries.

The homogeneous transformation of the ground universal frame with
respect to the platform universal frame will also be computed as functions of

joint configurations and ground geometries too.

2.1. Coordinate frames

This work considers a reconfigurable rover. The rover has four legs, and
each leg consists of five links connected through four revolute joints. The first
step is to return the leg to home position where all joint angles are set to home
position values. Coordinate frames are assigned according to the DH
convention. The joints ate labeled as 1= 1 to 4, and links’ end-terminal are
labeled with a frame number O; (i= 0 to 4) starting from Op as base frame
(platform) to Oy as an end-effector frame (wheel). The joint axes z; are assigned

along the axes of rotation as show in Figure 2.1:
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Base Frame

End-effector Frame 0, Z3

Figure 2.1. Joint axes assignments and frame numbering for the Rover.

Based on joint axes shown in Figure 2.1, we complete the three
orthonormal coordinate systems (Xi, ¥j, Z;). For parallel joint axes, z;xz;.1=0, x;
axis is assigned along the common perpendicular in the line directed from

frame O;.; to Oj, and for intersecting joint axes, X; axis is perpendicular to the

plane or parallel to the vector cross product £z;.1Xz; as shown in Figure 2.2:
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Xj
Oi.1 .
/\ 1-
/ L ~lo
Zi-l ‘/O\ Zi1 N !
Z; Xi Z;
a. b.

Figure 2.2. x;-axis setting up. a. In parallel joint axis, x; axis is in the line directed from
frame O;; to O;. b. In intersecting joint axis, x; axis is perpendicular to the plane or

parallel to the vector cross product +z;.;xz;.

The yj-axis is defined in the direction needed to complete a right-handed

orthonormal coordinate frame (X;, yi, Z;).

X; is perpendicular to the plane containing the two intersecting axes Z
and z;. Then X, is to align with X; (of course in home position). X, is also
perpendicular to the plane containing the two intersecting axes z; and z, in
similar way in assigning the X;. Finally because z3%z,=0, X3 is to be assigned
along the common perpendicular between the z, and the z3 axes. These
procedures will be commonly repeated for the four wheeled-legged

manipulators.
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For the coordinate frame of End-effector link (X4, Y4, Z4), Z4 is assigned
in parallel to z3. X4 is assigned along the common perpendicular between the z3
and z4. ys assignment is based on the right hand coordinate frame. The
coordinate systems (X, Yi, Zi), 1=0...4, from the base frame to the end-effector

frame are shown in Figure 2.3:

X0
O] X1, X2
A
Yo
Z 01
Yi 0,
Z
y2 Zy
Y39 Y4
O3
04 \ Z3
v
X3, X4 Z4

Figure 2.3. Assignments of coordinate frame on the form of home position.

The coordinate system (X, ¥i, zi) for 1 =1,2,3,4 is assigned at the end-
terminal of link 1 and hence it moves with link 1, and z; represents the motion
of link 1+1. The system (Xo, Yo, Zo) is assigned at link 0, the platform center, and

hence it moves with platform, and z, represent the motion of link 1.
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2.2. Denavit-Hartenburg parameters

So far, we have completed the designation of coordinate frames.
Currently, we need to describe the kinematics of the robot by describing the
position and orientation of each link with respect to the previous link using
DH approach. In a simple manner, each pair of successive joints is
characterized by a link length between joint axes a, a twisted angle between
joint axes @, a link offset d, and a joint angle 0. The description for these four
patameters can be given as follows: joint angle,0,, is a rotating angle between
the X;.; and X; axes about z;.; axis. Link offset, d;, is a translating distance from
Xi.1 and X along z; ;. Link length, a; is a translating distance from z;; and z;
along the x;. Finally, twisted angle, o, is a rotating angle between z;.; and z; axis

about X; axis. See Appendix A.

Applying the notations of DH parameters for one manipulator and for
each adjacent joints starting from base frame Oy to end-effector frame Oy as in

Figure 2.4:



Y1
0,
Z
X2
A
link 1 =3
o q; =0;+180°
a3 d; =
! a; =as
Y
: (X'l = °
\
Z3
v
X3

link1=1
q; =6,
d; =d,
31:0
ai=—900

link i=2
q; =9,
di=0
ai:O
o; =90°

0, 73
link i =4
X3 "94 E “ 4i = 94
I di = 0
a4
i a; =ay
| 4 o
0, <' 20
Zy
X4

Figure 2.4. Pairs of two adjacent links.
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Filling the table up with DH parameters, we obtain:

Table 2.1. Kinematic parameters table based on DH convention.

Link | Joint type | Variable Link (;)ffset Link :length Twisi(:x angle

l(o-1) | revolute 0, d; 0 -90

2(1-2 | revolute 0, 0 0 90

323 | revolute | 05+180 0 as 0

4.4 | revolute 04 0 ay 0

Since the rover has revolute joints only, all generalized coordinate

variables are rotational angles about their own rotational axes. The generalized
coordinates, (q; =0,, i=1,...,4), describes the motion in four-dimensional

vector of each legged manipulator.
d; :[01 02 e3 04]T 2.1)

The notations of generalized coordinates will match joint velocities and

joint accelerations, respectively, as follows in equations 2.2 and 2.3:

a= 6 6 6] 22)

g=06, 6, 6 6] 3
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These velocities and accelerations will be transformed forward later in

Chapter 3 using Newton-Euler Recursive Relations.

2.3. Homogeneous transformation:

The adjacent frames are related with each other through the use 4x4

homogeneous transformation matrix, A, which represents the orientation and
g > 4% p
position of the coordinate system O; relative to Oj.;. The Ai_l transformations

for the rover using DH convention are given as follows:

[c, 0 -S, 0
., IS 0 ¢ o
Al = 2.4)
0 -1 0 d,
0o 0 0 1
C, 0 S, 0
S, 0 -C, 0
A =" 2 2.5)
01 0 0
0 0 0 1
_C3 S3 O _a3C3
-S, -C, 0 -a,S
Al = 03 03 | a(; } (2.6)
0 0 0 1
—C4 _S4 O a4C4
S, C, 0 a,S
Al ! N 3434 @2.7)
0 0 1 0
0 0 0 1
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For simplicity, the notations are employed to abbreviate the cosine, sine
and related trigonometric formula as follows:

cosb;
S(0,+6,)=56,C0,+C0,S0,
C(0,+6,)=C0,CH,~ 50,56,

Si
G
S
Cy

2.4. Forward kinematics

The forward kinematics is to find the position and the orientation of the
end-effector relative to base frame if the angles of joints and geometric
parameters of manipulator links are given. Mathematically, it is a chain product
of successive homogeneous transformations moving forward from the base

frame out to the end-effector frame.

A'=A"ALALA

¢ o -S o||C,o S o|-C S o0 -aC||C, -S, 0 aC,
S, 0 C o||S, o -C, o||-S, -C, 0 -aS,|[S, C, 0 aS,
B 0 -1 0 d, . 0 1 0 0 . 0 0 1 0 . 0 0 1 0
0 0 0 1 o 0 0 1 0 0 0 1 0 0 0 1
CC, =S CS, 0|-C4 Sy 0 -a,Cy—aC
_ SC, G S8, 0 ) =Sy -Gy 0 —a,Sy—asS;
-S, 0 C, (, 0 0 1 0
0 0 0 1 0 0 0 1
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-CC,C,+SS,, CCS,+SC, CS, —CC,@,C,+a,C)+S,(a,S,+a,S,)

2734

_ -5CCu-CSy SCS,-CCy, S8, -5C,(,Cy+a,C)-C(a,Sy+aS;) (2.8)
5,Cy =S,S G S,(a,Cy+ a3C3) +d,
0 0 0 1

The above equation, which describes the posture of the rover, is a

function of joint variables, in which they were transformed into a Cartesian
frame relatively to base frame. In other words, the computed matrix A] can be
considered generalized matrix Bj providing 3x3 orientation matrix and 3x1
position vector of the last frame O4 with respect to the base frame Oy. The
orientation matrix describes the approach vector a, the orientation vector 0, the
normal vector n. The position vector, p, is the position of the end-effector with

respect to base frame.

nX OX ax px
n, o, a, p
Bg — ny Oy ay py (29)
0 O 1

In order to reduce the amount of computations, the first column of Bj

may be obtained as the vector cross product of the second and third columns

n=oxa 2.10)
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The position vector from the platform’s base frame to the wheel frame
is the fourth column of equation 2.8; we obtain equation 2.11 which can be
denoted in Figure 2.5
—CCy(a4Cy4+a3C5) + 5 (a,S54+ 25S5)

1}? = - SIC2(34C34+ a3C3) - Cl (a4S34+ 3383)
Sy(a4Csy+23C3) +d,

2.11)

Figure 2.5. Position vector from base to end-effector frame.
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2.5. Base frame

Our mobile platform is a base link connected to a differential gear joint.
Each end-terminal of this differential gear is connected with another link as

shown in Figure 2.6.

ZoL
e1L

elR ZoR

Figure 2.6. Differential gear joint

There are two base frames attached on the differential gear joint, i.e. Og

and Ogg, and they are located in the central platform as shown in Figure 2.7.

Figure 2.7. Two frames attached at the base link.

From the ridet's point of view, zgg is the right lateral axis and zg is the
left lateral axis, yor is the front longitudinal axis in the direction of travel and
you is the rear longitudinal axis, finally Xor and Xop are axes running as one axis

vertically with respect to the platform plane.
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The homogeneous transformation, from right base frame to left base

frame, is simply rotation about Xgg axis by £180 degree. See Figure 2.7.

1 0 0 0
-1 0 0
AR = 2.12
oL 0 -1 0 (2.12)
0 0 0 1

The homogeneous transformation, from left base frame to right base
frame, is also equal the transformation matrix from right to left base frame; that

is simply rotation about Xop by £180 degree.

1 0 0 O
0 -1 0 O
AOL — 213
OR 0 1 0 ( )
0 0 0 1
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2.6. Platform frame

However, we can choose one of the two base frames as platform frame
for simplicity. In this work, we referred the right base frame as platform frame.
Applying the above rules and procedures on the four legs as shown in
transformation graphs in Figure 2.8, it shows the homogeneous
transformations between two adjacent links. Besides, the forward kinematics
transformations from the platform frame to the four wheel frames of the four
legs can be obtains respectively as,

Forward kinematics for right front leg:

Al = Alg - Ad- Al Al (2.14)
Forward kinematics for right rear leg:

Alrr = Al A Alre Al (2.15)
Forward kinematics for left front leg:

Alle = Agl- Al AS Adie Al (2.16)
Forward kinematics for left rear leg:

Allr = AGL-ATL-Ad - ASlr- Allk (2.17)
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OR
Om‘ AOL OOR
® 3 9
OL OR
Y AlL Y AIR
OiLe ¢ Or
1L 1R
AzL Y Y AZR
OZL OZR
2L 2L 2R 2R
A3L1: A3LR A3RF A3RR
O3LF O3LR O3RF O3RR
3LF 3LR 3RF 3RR
A4LF A4LR A4RF A4RR
O4L1: O4LR O4RF O4RR

Figure 2.8. Transform graph for the four legs, starting from platform frame to end-
effector frame.

Figure 2.9. The frames for the four legs,
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2.7. Wheel kinematics

Kinematics of the wheel is a study concerned with describing the way in
which the wheel moves. In this thesis, the wheels are only employed as driven
links for the purpose of locomotive propulsion. In the presence of driven
system, each wheel has only one rotational degree of freedom in term of
angular variable. The rotational motion of the rigid wheel occurs about a rolling
axis z3 by angle value 0,. The rolling axis is simply a line axis going
perpendicularly through the center of the wheel. The translational motion of
the rigid wheel occurs on the ground and in a straight line. The mechanical
purposes of the wheel link and the wheel angle can be described under two
factors; manipulation and locomotion:

— Manipulation factor:

In the case of manipulation purposes, the wheel end-effector frame is
simply a touch point with surface. It is denoted with O4 (X4, Y4, Z4) and is
setting up as follows: X4 axis is normal to the rim of wheel; y4 axis is in tangent
direction of the rim of wheel; and z4 axis is directed perpendicularly to wheel
plane. See Figure 2.10 which shows three selected points (Py, P», and P3) on the

rim of wheel.
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Ya

X4 P3

Py
X4

P,
Y4

X4

Figure 2.10. The coordinate frame of manipulated wheel.

The position vector of contact point O4 with respect to base frame Oy is
dependent on the configurations of rover (0,,0,,0,,0,). The manipulated
variable 0, is simply arc angle which is rotating about X3 axis is dependent on
differential joint angle,, shoulder joint angle 0,, pitch angle 6, and surface
geometry B,. These factors will be explained in coming sections.

The manipulation angle 0, (atc angle value) is considered in the

following calculations:

1. Roll angle (¢).

2. Forward kinematics: the orientation matrix and position vector of the
manipulated links with respect to base frame must treat 0,.

3. Inverse kinematics.
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— Locomotion factor:

In locomotion purposes, the wheel is considered as driven link with 0,
which in turn is considered the angle of wheel rotation generated from motor
torque. The angular acceleration of the wheel can be evaluated as,

\%

0, :a—“‘ (2.18)
4

Then in general, the kinematic equations of the rotational wheel are
determined under assumed constant angular acceleration 8, as follows
0,=0,,+0,t (2.19)
0,=0,,+ 94,0t+%é4t2 (2.20)
The travel length of wheel movements on ground is directly
proportional to generalized joint coordinate of wheel link 0, and the radius of

wheel a4.

P,

a4

P,

P, <———-a494-———>{ P,

Figure 2.11. Wheel angular movement tracked linearly on ground.
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wheel travel length = a,0, (2.21)

The locomotive angle 0, (rotation angle value) is considered in these
calculations:

1. Linear displacement, velocity, and acceleration of wheel tracked linearly
on the ground.

2. Linear displacement, velocity and acceleration of platform frame with
respect to universal frame expressed in universal frame, i.e. v, and v,
respectively.

3. Generalized coordinates of angular displacement, velocity and
acceleration (q,, q,, 4, ) those are substituted in forward recursion.

4. In addition, yaw angle i resulted from variance of wheels’ velocities.
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2.8. Platform kinematics

The above mentioned can be extended by including a coordination
between the locomotion and manipulation. Each two legged manipulators on
both sides of the rover are locomoted by two wheels at same velocity.
However, each side is locomoted at different velocity relatively to the opposite
side. These differences in velocities between two opposite sides will rotate the
faster side around the slower side, and in result these will rotate the entire rover

about the yaw axis Xg.

The rover moves in forward and backward direction according to the
fixed rotation of the wheels on ground, and rotates on right and left direction
according to the difference of wheels’ velocities. Thus, we will define the
relationship between the angular velocity of the wheels and the travel path of
the vehicle body on the ground. In addition, we will coordinate the processes

of locomotion with manipulation expressed in the universal frame.

We will make our calculations dependent on the contact wheels with

ground. Moreover, we will choose kinematic values of one wheel from each
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side, i.e. 0,, and 0

.L» even if the all wheels are in contact with ground. On the

right side 0,, rotates about z3g, and on the left side 0, rotates about z3 in
term of counter clock wise direction. However z3; has inverse direction
relatively to zsg as shown in Figure 2.12. z3;, can be transformed to be pointing

to the direction of zsg by multiplying 0,, by negative sign.

In order for moving forward, it is required to manipulate the

configurations of the wheels in adequate angles and direction. 0,, must rotate
in counter clockwise direction in positive valued and 0, must rotate in

clockwise direction in negative value as shown in the following Figure 2.12

Figure 2.12. Two opposite wheels enabling the rover for rotating forward, the arc length
of the wheel is tracked on ground, from start to finish of the travel.
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Therefore, the travel path of right wheel and left wheel on ground can
be obtained respectively as
dp = a, 0, (2.22)

d, = a,-0, (2.23)

The rover travel is generated from the linear movement of wheels on the
ground. The travel path of the rover body is the average of the travel lengths of
right and left wheels.

_ (dR +dL) _ a4'e4R+a4'e4L

d; 2 2

(2.24)

The instantaneous linear velocity of the wheels is equal the derivation of
travel path with respect to time, or in other words, the rate of change in the
travel path with respect to time.

Vir = 8,0, (2.25)

Vir — a4'94]“ (226)

The robot's velocity is the rate of change in the robot's position with
respect to time. Thus, linear velocity of robot body is rate of change of the

average of the wheeled travel lengths with respect to time.
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_ a, 0,,+a, 0,

Vi 3

2.27)
The linear acceleration of the wheel is the rate of change of the velocity
of the wheel with respect to time
Vur = a'4'6411 (2.28)

vtLR = a4'64]“ (229)

The robot's acceleration is the rate of change in the robot's velocity with

respect to time

_ a, 0,,+a, 0,
2

Vg (2.30)
In any way, the rover motion on the non-flat surface and the links
motions about their joint axes yield a change in the orientations of the platform
frame. This different platform’s attitude will be referred with respect to the
universal frame. Both universal frame and platform frame have same origin on
the center of platform (no translation), but different orientations as shown in
Figure 2.8. These orientations can be described in different techniques, e.g. Roll

Pitch and Yaw, FEuler Angle representation, or Directional Cosine

representation. This work chose Roll, Pitch and Yaw method.
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2.9. Platform universal frame

The rover motions are referred with respect to right-hand orthogonal
coordinate frame, called the universal frame Oy (Xy, Yu, Zy). In other words,
the coordinate frames and equations of motion of each link are considered with
respect to. It is located at the center of platform forming the horizontal plane,
yu-Zy, parallel to ground plane, and Xy axis is normal to ground plane directed
upward as shown in Figure 2.13.

The Orientations are measured from the attitude of the body in three
dimensions (Roll, Pitch and Yaw). These independent motions cause three
rotational degrees-of-freedom as shown in Figure 2.13. In our case, zero
translation is between the two frames. The body’s attitude, which is referred
about the universal frame, can be broken down into: roll corresponds to a
rotation ¢ about the longitudinal yy-axis, pitch corresponds to a rotation 6
about the lateral zy-axis and yaw corresponds to a rotation y about the normal
Xy-axis. As supposed the sequential order of rotations is as following:

e Rotation of y about Xy-axis.

e Rotation of @ about Zy-axis.

e Rotation of ¢ about yy-axis.



58

Figure 2.13. Body attitude provides three rotational degrees-of-freedom (¢,6,y ),
assuming congruent frames for platform and universal frame at the beginning.
In simpler manner, any 3-Dimensional rotation is conventionally defined
as a rotation in 2-Dimensional counter-clockwise direction along positive axis
of rotation. So firstly we specity the axes of rotations about universal frame,

and secondly the rotation angles in radian as shown in Figure 2.14:

XU Xp yo XU XU, X0

i ]
é—-
ol
|

0¥ T

Yo Yo ﬁ,
A/
Zy, Zo Zy
Z
Roll (¢) Pitch (0) Yaw (y)

Figure 2.14. Roll motions about yy axis by ¢ angle, Pitch motions about zy axis by €
angle, and Yaw motions about xy axis by y angle.



59

These series of body’s rotations, around the universal frame, can be

described in three matrices. Moreover, these matrices can be combined by

multiplications with each other orderly as follows:

A(%]R = RPY(¢ 909l//) = ROt (YU) ¢) ROt(ZUa 0) ROt(XUa V/)

cos ¢
0

—sin ¢
0

cgcl
s
—s¢gcl
0

0 sing O cos @ —-sind 0 O 1 0 0 0
1 0 0 sinmd cosd 0 0 0 cosy -—siny O
0 cos¢g O . 0 0 1 0| |0 sin v cosy 0
0 0 1 0 0 0 1 0 0 0 1

—c@gsOcy+sgsy  cogsOsy+sgcy 0

clcy —cOsy 0 231
sgsOcy+cgsy —sgsOsy+cpcy 0 '
0 0 1

Ay is a homogeneous transformation from the universal frame Oy to

the body frame Oggr. These three attitude angles can be generated as a result of

influences of geometric configurations of the manipulators and ground

geometries. However, the order of rotations is an important, which means it is

not commutative. Thus, the sequential order of rotations is not a matter of

suppositions, but it is definitely subjected to the orders of sudden changes in

ground geometries and joint configurations that will cause platform’s

otrlentations.
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If the platform is congruent to a universal base frame, the homogeneous
transformation from the universal frame Oy to the body frame Ogr will be

unity matrix:

1 000

AU_0100 032

®lo o1 0 '
0001

The homogeneous transformation between universal and left base frame
is post-multiplying Aj. by Agf
Ay =Ag- AL

cpcld cgsbcy—sgsy  —chsOsy—sgcy 0

_ s@ —cOcy cOsy 0 2.33)
—sgcl —s@gsbcy—cosy  s@sOsy—cogcy 0 .
0 0 0 1
Oy
Ay Ag
O()L OOR

Figure 2.15. Transform graph of universal frame and two bases frames.
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Figure 2.16. The transform graph of rover frames.
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2.9.1. Attitude angles
The previous roll, pitch, and yaw angles of platform frame with respect
to universal frame are influenced by joint configurations of the manipulators
and geometric ground input systems. The geometric configurations of the

manipulators are function of joint variables (0,,0,,0,,0,) that formulate the
rover posture. 0 , must be taken into accounts that where it must be treated as

manipulation purpose or locomotive purpose. The ground input systems are
functions of altitudes from ground universal level to wheeled-ground contact

points.

The calculation of stability measure must meet conditions required when
at least three legs are in contact with the ground surface all the time.
Meanwhile, one supported leg from each side (one from left side and the
second from right side) is enough for covering the required calculations as

shown in Figure 2.17.
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Xn Xy

—

> Joint

/ Configurations

Ground Input
Systems.

YG

Figure 2.17. The geometric configurations and ground input Systems relative to the two
legged manipulators.

The robot remains stable with three supported legs on ground while the
fourth leg remains without contact. One supported leg from each side is
chosen for our computations and we will remark it by K. K is stands for the

chosen leg and it is either front leg or rear leg under conditions of connectivity

with ground as shown bellow

K = F; if(F>e)|(R > 0)
" |R; if(F > 0)& (R > o)

leg > e means that the leg is in contact with ground.
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leg > o means that the leg is not in contact with ground.

As explained in this example: assume right front leg is on air without

contact with ground as shown in the following Figure 2.18

Leg LR —_ —) Leg RR

7

K= Front g K=Rear

7

Leg LF

JE

) Leg RF

Figure 2.18. The black circle indicates for supported legs and white circle indicates for
not supported legs with the ground.

On right side, the front leg is denoted with RK; and on the left side, the

rear leg is represented with LK.
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2.9.1.1 Pitch angle

Pitch angle corresponds to a rotation of the platform by 6 about the
lateral zy axis as a result of differential joint rotation, rover configurations and
surface geometries. Zor axis and Zy axis are contingent and pointing toward the
right lateral side of the platform. zg axis is in opposite direction of zy axis

pointing toward the left lateral side.

The pitch angle is firstly resulted from the difference average between
the angle of right rotary link 0,, and the angle of left rotary link 0,, as shown

in Figure 2.19:

210 :M

: (2.34)

ZoL

Differential joint

0 Zu> Zor

Figure 2.19. Pitch angle.
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0 is valued a positive angle about zy-axis, when the platform rotates in
counter-clock wise direction, or on other word, when 0, is positively greater

than 0, .

RSN (7
N\

AN NY
NN
\\

e

Figure 2.20. Rotation about lateral axis of universal frame by 6.
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4RR
5k
6™,

4RF
(rG )XU

XG

Ground

Reference YG Og ;/ 3

e

Figure 2.21. Elevation difference
And secondly it resulted from the elevation difference between the front
and rear legs and rover configurations. Applying Pythagorean relations, the

trigonometric sine function is

G G

i ), ~ (k)
(4RR % 4RF J
0R 0R

i ),,, ~(th)
(4RR You 4RF )

sin@? =

0® =sin™' z i (2.35)
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(rflizk) = =SirCor (@4Coupp T2;C3pp) = Ci (3,S34p5 +23855) (2.30)

YOR

(rfRRR) = =S, Cor (@,Caypr + 83C5rp ) = Cir (3,S34pp +@3S5pp ) (2.37)

YOR

Finally the pitch angle is equal to

0=0"+6% (2.38)
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2.9.1.2 Roll angle
The roll angle corresponds to a rotation of the platform by ¢ about the

longitudinal yy axis. Yor axis and yy axis will be contingent and pointing toward
the front longitudinal view of the platform if and only if the rover is

manipulated at symmetric configurations and moving on flat surface:

LCF altitude

XG RKIS

\4 V

»

ZG

Figure 2.22. Front view shows the platform rotating about longitudinal axis of universal
frame by ¢ . yo-axis and yy-axis are pointing out of paper.
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The wheel frame Ougk is assigned at the contact point located as an end-
effector where 0, =—0,;—0,,¢+8—-0. The roll angle about yy axis is
computed by using Pythagorean relations; the opposite side is the altitude
difference between the RCF and LCF altitudes; the hypotenuse side is the

lateral length of the platform.

Platform v
_________ T
A i
' RCEF altitude
LCF altitude 5
v v

Figure 2.23. Pythagorean relations.

The trigonometric sine function is

RCF altitude— LCF altitude
platform lateral length

sing = (2.39)

Where,

RCF altitude = ’ (rlR )XU

G

LCEF altitude = . (I‘IL )XU

G

Platform lateral length = 2d,
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¢ is valued a positive angle about y; axis, when the platform rotates in counter-
clockwise direction, or on other words, when the RCF altitude is higher than

the LCF altitude.

— Right conjunctional Altitude:
Mathematically, the altitude from O to ground frame Og is equal the
summation of the altitude from Oig to Og4rk, and the altitude from Ogrg to

ground frame Og

1R 1R 4RK
(rG )X U (r4 RK )x U + (rG )x U

U U 4RK
(r4RK )xu - (rlR )XU + (rG )xU

(2.40)

These calculations have to be referred to universal frame as shown in Figure

2.24:
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.
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R e et e
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1

:

U |
i)

(4RK XU :

1

1

XG

Ground

Reference Og ZG
/

Figure 2.24. The altitude of RCF O to ground frame Og

The mathematical subtraction of 1, and 1% will provide us (11:11:1( )U,

where (rf]i )

Xu

is the first row and fourth column of the homogeneous

transformation matrix of frame O;r with respect to universal frame Oy

U _ AU OR
AIR _AOR'AIR

cosg 0 sing 0| |C, O =S O
|0 1 0 0[Sy O C, O
a —sing 0 cos¢g O 1o -1 o d,

0 0O 0 1 0 O 0 1

cosgC, —sing -—cos¢gS,; d,sing
S 0 C 0
= " O (2.41)
—singC,;, —cos¢g singS,; d,cos¢

0 0 0 1
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Thus,

(rllé )XU =d, sin ¢ (2.42)

And (rfRK)XU is the first row and fourth column of homogeneous

transformation matrix from universal frame Oy to end-effector frame Oy,

(). = €080+ (= C rCor (3,Crung +2,Crnc ) +Si (2, Ssane +2: S5 )+

(2.43)
sin ¢ ’ (SZR (a4C34RK + 3-3C3R1<) + dl )
Finally as mentioned,
(réR )xU =cos¢- (_ CirCor (a4Caypg +33C5p¢ ) +5r (3,S3pk + 23Sk ))+
(2.44)

sing- (SZR (a,Caype + a3C3RK))+ (réRK )xU
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— Left conjunctional Altitude
Mathematically, The altitude from frame Ojr to frame Og is
mathematical summation of Xy-component of position vectors from LCP

frame O, to GCP, (rifK)xU , and system input from GCP to ground frame,

4K\ .
(rG )XU :

(2.45)

Where, mathematical vectors subtraction of r4ULK and rlli will provide us

(rﬁK)U; 1 is the fourth column of the homogeneous transformation matrix of

frame O with respect to universal frame Oy:
U _ AU OR A OL
AIL - AOR.AOL.AIL

[ cos¢ 0 sing 0][1 0 0 O][C,, O =S, O
0 1 0 0[|0-100[|S, 0 C, O
—sing 0 cosg 0|0 0 —10[| 0 -1 0 d,
0 0 0 1//00 01/ 0 0 0 1

(2.46)

[ cosgC,, sing —cosgS, —d,sing
_SIL 0 _CIL 0
—singC,; cos¢ singS,, —d, cos¢
0 0 0 1
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Thus,

(V). =—d,sing 2.47)

XoL, X0R Xy

OiL

Figure 2.25. Coordinate frames of Oy, Ogr, Oor and O;p.

And (2, )

Xu

is the first row and fourth column of homogeneous

transformation matrix from frame Oy to end-effector frame Oy k..

(r4ULK )XU =CO0S ¢ . <_ CILC2L (a4C34LK + a3C3LK) + SIL (a4S34LK + a3S3LK))_

(2.48)
sin ¢ ' (SZL(a4C34LK+ a3C3LK) + dl )

Finally,

(r<13L )XU =cos¢- (_ CiCop(a,Coyrx +a;3C51¢) + S, (a,S540 ¢ + a3SSLK))_
(2.49)
sing- (S2L (a,Cagr + a3C3LK))+ (réLK )XU

The roll angle about yy-axis can be obtained by using Pythagorean

relations as shown in Figure 2.23:



The ge

sing =

ometric sine function as explained

(tr), = ().

2d,

y —CrCrr (a,Capk +23C5 )+ S5 (@, S5 pc + 25855 ) +
COS@-

Ci LGy (@,Chyc+a5C5 ) =S (8,55, +a555 )
sing- (SZR (a,Courc t35C55¢ )+ 5, (a,Coy i+ a3C3LK))+

4RK 4LK
(rG ) - (rG )
X U X U

+

2d,

Where,

and,

(rf;:K) =S,r (2,Caypx +2;Csp¢ ) + 4,

Zor

Syr(a,Caupi +8;C5¢) = (rfll{{K) -d,

Zor

(rfLRK) =-8,.(a,Cyycta;C5 ) —d,

Zor

S, (@,Chy+a,C5 ) = _(rfLRK) -d,

Zor

—CrCor (a,Cayre +@3C 5k ) +S1x (2,S3px + 23558 ) = (rfll{{l()

OR

- CILCZL(a4C34LK+ a3C3LK) + SlL(a4SS4LK+ asssLK) = (r4LK )X”R

X0

R
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(2.50)
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Therefore, this trigonometric equation can be simplified as fellows

cosg (€28 ), itk Jrsing-((e0Re).,, ~(efi),, 24 )™, )
OR OR OR OR U U (251)
2d,

sing =

Rearranging and simplifying the above equation,
cos¢g- [(rf}lfK )XOR - (rffK )XOR )+ sing- ((rfllfK )ZOR - (rffK )ZOR -4 dlj = —(réRK )Xu + (réLK)XU (2.52)
Applying the trigonometric identity [63] in order to transform eq.2.52 into a

basic trigonometric equation,

\/((rfng )XOR - (rA?I}}K )XOR )2 + ((rz(t)]%( )ZOR - (TA?EK )ZOR - 4d1j2 sin(g+ ) = _(réRK )Xu + (réLK )X (2.53)

U

The equation becomes,

4RK 4LK
‘(rG )XU“L(fG )XU

sin(gp+a)= = = (2.54)
I4RK —\yrk +| \l4rk ik —-4d,
ek, -, ) ()., ), -aa)
Finally, the roll angle is
_(.4rK 41K
b sin” (rG 2)XU +(rG )XU |-« (2.55)
Lre f ~\Lk +l\ure ), —\uix), —44d
\/((OR)UR (OR)OJ ((OR)UR (OR)UR )
Where,
0R _(or
tan”! (r4RK)X°R (r4LK)X“R ; if ((rflgx) ‘(fffx) —4d1) >0
(rﬂ(f]llsK)Z _(TA?EK)Z —4d, “or “or
a= o° Vs (2.56)

(rf§K)xoR _<r£5K)"“R J if (( Y )ZOR At

|
T+ tan T, T, ) —-4d j <0
0R 0R > 4RK 4LK ), 1
[(r4RK)ZOR _(r4LK)ZOR -4d, oR
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2.9.1.3 Yaw angle

The yaw angle corresponds to a rotation about the vertical axis of the
platform universal frame; Xy-axis represents the axis of rotation, and y

represents the angle value of rotation as shown in Figure 2.26:

Xu, Xo
ka

L (@

/
/

Figure 2.26. Rotation about vertical axis of universal frame by iy .
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Explicitly, the human eyes can recognize the yaw rotation as a horizontal
change in the positions of right and left conjunctions, as shown in the

following side and front view Figure 2.27.

RCand LC

—-0-4—[———0—- «—
—\
Jx_’: - a
5 o
\/

YUa YO
Y

Figure 2.27. Side view shows the difference in the locations of LC and RC, and top view
shows the rotational yaw angle y occurred between the universal and platform frame.
Implicitly, the yaw angle is yielded from the differential velocities
between the right and lift locomotive wheels. The different wheels” velocities
make the faster wheel rotating around the slower wheel, as well as make the
entire rover rotating around the Xy component of the universal frame. This
difference defines the relationship between the movements of the wheels and

the orientation of the rover with respect to universal frame.
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In general, the travel of the rover is generated from the angular
movements of locomotive wheels on the ground. The travel length of wheel
movement (d) on ground is directly proportional to generalized joint

coordinate of wheel link (0,) and the radius of wheel (a,).

The length of travel may be tracked along either line path if the two
sides move with the same velocity or arc path if the wheels on one side move

faster than that opposite side as shown in Figure 2.28:

—————

C
(-

(b)

Figure 2.28. a. Arc path occurs when a,0,, # a,0,,
b. Line path occurs whenever a,0,,= a,0,,
The rover posture on Figure 2.28.a shows that y is positive value angle

rotating around Xy axis in counter clockwise direction whenever the left wheels

are moving at higher speed than the right wheels.
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The rover will travel forward along yor axis if 0,, rotates about z3g in
counter-clock wise direction and 0,, rotates about z3, in clock wise direction,

and vice versa.

Mathematically, we can find yaw angle through using arc laws. The arc
length is the difference in the number of wheeled rotations on ground
i.e.opposite=a,0, —a,0,,, the radius is the lateral distance between the
opposite wheels. As shown in Figure 2.12, the arc length for the wheels on
right side and left side, respectively, can be obtain as

Ay =a,b, 2.57)

By=a0, (2.58)

Subtracting the two equations from each other, we obtain

(B-A)-w=a,0, —a,0,;
2dy=a0,, —a,0,

_ a4O4L — a404R
T (2.59)

The above equation can be extended to include the case when the rover

opens its legs aside as shown in Figure 2.29



Figure 2.29. Front view shows the four legs open by an angle about zir

a4e4L_ a4e4R

OR R
Tyrk ) - (r4LK )

Zor Zor

T

a0, —a,0,;
SZR (a4C34RK + a3C3RK) + dl - (_ S2L(a4c34LK+ a3C3LK) - dl )

a4e4L_a4e4R
SZR (a4c34RK + ascsRK) + SZL(a4C34LK+ aSCSLK) +2 dl

82

(2.60)
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2.10. Rover transform graph

So far, we find the homogeneous transformation from universal frame
Oy to base frame Oy, and the forward kinematic transformations from base
frame Oy to wheel frame O4. However, the homogeneous transformations
starting from wheel frame Oy4 passing by surface frame Og to ground frame Og
are not yet defined. Moreover, the homogeneous transformation from platform
universal Oy to ground universal Og is also not computed. Therefore, the rover

transform graph is not completed as shown in Figure 2.31.

2.10.1.Ground universal frame

The platform universal frame Oy and ground universal frame Og have
the same orientations which are fixed, but there is variable position, 17,
separating between these two frames. Therefore, the 3X3 rotational matrix that

relates these two frames, Oy and Og, is identity matrix, and the 31 position

vector is a function of the input system and the configurations of manipulators.

I 0
AU —| 33 Tosa 2.61
G {0 | } (2.61)
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The variable position vector, 1, is the summation of the position vector
r, from platform universal frame to wheel frame and the position vector t
from wheel frame to ground universal frame
g =1 +15
4 U 4
(rG )XU (r4 )XU + (rG )XU

r, )yU + —(r4U )yU = 0 (2.62)

W), | [-0), 0

The magnitude of the position vector 15, from wheel frame to ground

frame, is definitely equal to the magnitude of position vector 13, from ground

frame to wheel frame, but in opposite direction

4RK _ G

=1l (2.63)

The input system (r4G )XU , 1s the vertical altitude from ground universal

frame to wheel frame (end-effector). The position vector 1, is a function of

joint variables that formulate the rover posture and decide the location of

ground contact point.
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Finally, the combination of identity orientation matrix and the computed
position vector defines the homogenous transformation from the platform

universal frame Oy to the ground universal frame Og

1 0 0 (r4U)XU+(ré)XU
010 0
Al = 2.64
1o o 1 0 269
0 0 O 1
Xy
XU, Xw, XG
KN K3
. v)
Zy, Zw, ZG
1
YU:» YW, YG

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A

Figure 2.30. Platform universal frame, wheel universal frame, and ground universal
frame are contingent frames for being having the same orientations.
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2.10.2. Universal wheel frame

After finding 4x4 homogeneous transformation matrix of Roll, Pitch
and Yaw, and A’s from platform to end-effectors, we can find the pose of the

wheel frame with respect to the universals; Oy, Ow, Og.

Ou

U
oL AOR

OOL O()R

Figure 2.31. Completed transform graph.
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Since the platform universal, wheel universal, and ground universal have
the same and fixed axes, the orientation matrix of wheel frame with respect to
any one of these universal frames can be the same as

The pose of wheel end-effector with respect to a certain frame is simply
the study of orientations and the position vector. The orientations are defined

in three angles values (o, 0, 03) tespectively about (Xu, Yu, Zu axes), (Xw, Yw,
Zw axes), ot (Xg, Ya, Zg axes). The position vector is defined as rf as shown in

the following Figure 2.32:

XU, Xw, XG

Yu, Yw, YG

Zy, Zw, ZG ‘v -
b
Ol3 ya

Zy

—

X4

Figure 2.32. End-effector pose
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The solutions for angles are specified here using roll, pitch, and yaw
approach. The roll is a rotation about y-axis by a.,, the pitch is a rotation about
z-axis by 03, and yaw is a rotation about x-axis by 0.3

T4W = ROt(yW, (12) ROt(Zw, (13) ROt(Xw, (l])

nx Ox ax Py ca, 0 sa, O |cay —-sa; 0 O 1 0 0 0
ny oy ay D, _ 0 1 0 0 |83 clly 0 0 ' 0 ca; —-sa; O (2.66)
nz o0z az p, -sa, 0 ca, O 0 0 1 0|0 sa ca; 0
0o 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

The roll, pitch and yaw approach has no translational vector, thus py, py
and p, must equal zero. In any way, if we pre-multiply Equation 2.66 by
Rot(yw, a;)" we obtain

Rot (yw, ®,)" T, = Rot(zw, «,) Rot(Xw, o) (2.67)

The left hand side is

CO,N,—S0,N, CO,L0,—S0,0, COLA,—S0,az CO,P,— SO,z

n o a p
LHS = Y Y Y Y (2.68)
sa,n, +ca,n, Ssa,0,+ca,0, Sd,a,+co,a, So,p,+co,p,
0 0 0 1

The right hand side is
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co; —sosco,  sazso, 0O
sa;  cosco;, —cogsa, O
RHS = (2.69)
0 s, cay, 0
0 0 0 1

The third row, first column element on the right hand side is zero.
Equating this to the element on the left hand at the same location we obtain

so,n, +co,n, =0 (2.70)
then,

o, =atan2(-n,,n,) (2.71)

Equating the 1,1 and 1,2 elements from left and right hand sides we obtain

ca,N, —S0,N, = COly (2.72)
n, =sa, (2.73)

then,
a, =atan2(n,, co,n —sa,n,) (2.74)

Equating the 3,2 and 3,3 elements from left and right hand sides we obtain
ca, =so,a, +co,a, (2.75)

sQl, =50,0, +C0,,0, (2.76)



90

then

a, = atan 2(so,0, + €0,,0,, S0,a, + C0,a, ) (2.77)

6 multiplies, 3 additions, and 3 transcendental function calls.
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2.10.3. Surface geometries

This work takes the shape of surface geometry traversed by the rover
into account; (flat surface, step surface, inclined surface, sinusoidal surface,
random surface). The surface frame is an orientation axes with respect
universal ground frame Og setting up as follows: Xg axis is normal to surface; ys
axis is in tangent direction of contact surface; and zg axis is directed

perpendicularly to Xs-ys plane. See Figure 2.33

Xs
¥Ys

(a) Flat surface and inclined surface

Xs

(b) Sinusoidal surface.

Figure 2.33. Surface frame.

The homogenous matrix of surface frame with respect to universal

ground frame, can be given by Roll, Pitch, and Yaw,
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= Rot(z I{Ot(XGa Bl)
b B)
ROt( G» Bz) t( Gs P3 0 0
29P3>» 1) | ) l | SBI
R{ =RPY(B,,B;,B Bj’ SB i o
Cp 0 Sﬁzl CSB - .
= : 0 : 3
1 C
{sosz 0 SB,

t|lo sp cp,
0
0
5SPB,+8P,cP,
B.sPscPi+sPysP,  cPsPss }
—CP,SP;
|: cB,eB,

l2|3 |2|3| |2| IZI3I1 IZI

2.78)

Og

ZG
XG
Xs B3

YG
Xs

Ps
Og s
¥s
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The touching point occurs between wheel and surface, and its position

vector with respect universal ground frame is given by

5 ={—(r) 2.79)

Because the surface frame Og, universal wheel frame Oy, and end-
effector frame Oy are situated at the same point, those frames have the same
position vector as obtained in equation (2.80)

g =10 =17 (2.80)

The homogeneous transformations starting from wheel end-effector

frame O4 and surface frame Og:

R R{R: =Ry =1 (2.81)
R¢-RE =Ry -1 (2.82)
R{ =R} -I-RY (2.83)

R{ =R} R{ (2.84)
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Chapter Three

3. Computational Dynamics

The approach which thesis will recommend and base in dynamic
calculations for computing the equation of motion is Walker and Orin [61, 62]
application “recursive Newton-Euler formulation”; because of its explicit
notations and less execution time. They formulated the equations of motion
in explicit form in comparison with others; simply it will yield a set of recursive
equations, which can be applied to the links sequentially to compute the
generalized forces referenced in their own coordinates in a short period of time

and in on-line control.

3.1. Dynamic equations of motion
The second order nonlinear system equations of motion for the
manipulator, with n joints and n+1 links, are generated generally from inertia,

friction, Coriolis and Centrifugal, and gravity as shown in equation 3.1.

J(@q+CatF(@)+G@=Q (3.1
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Where,
q n % 1 vector of generalized joint coordinates,
q n x 1 vector of joint velocities,
qJ n x 1 vector of joint accelerations,

J(@) n x4 symmetric joint space inertia matrix, or manipulator inertia
tensof,
C n X 4 viscous friction matrix,

F(q) n x 1 vector defining Coriolis and Centrifugal forces,
G(q) n x 1 vector defining the gravity terms,

Q  n x 1 vector defining the input generalized forces.

The manipulator joint space inertia and gravitational force are dependent
on the manipulator configurations, q, So that they are considered as function of
variable joints. The Coriolis and Centrifugal forces are considered as functions

of joint velocity, q [49].

The input generalized forces Q; are forces and moments on the joint 1
exerted by the actuator and by consequences of normal force, friction surface,

and frictional moments exerted by surface on wheel end-effector.
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3.2. Output generalized coordinates
The environmental inputs acting on the manipulator system are
represented in forces and torques exerted on an end-effectors. The outputs of
the system are represented in link’s positions, velocities, and accelerations. In
other words, the forces and torques cause the accelerations and velocities,

irrespective of linear or angular forms.

Dynamics conduct two problems: forward dynamics recursion and
backward dynamics recursion. The forward dynamics studies the trajectory of
end-effectors with regard to the forces and torques that intuitively cause the
motion. The inverse dynamic computes the forces and torques required to

cause motion. See Figure 3.1.

Forward
Recursion ..
Forces > Velocities
Torques Accelerations
Backward
Recursion

Figure 3.1. Dynamics propagations

Figure 3.2 shows link 1 is connected to its two adjacent links; i.e. link 1-1

by joint 1 and also link 1+1 by joint 1+1. As well as, it shows the force and
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moment (F; and Tj) which act directly on end-terminal of link 1 by link 1-1; and
force and moment (Fiy; and Tis1) which act directly on another end-terminal of
link 1+1 by link 1. Furthermore, the inertia force and moment (fj ,t,) act

directly on the center of mass of link 1.

Joint i+1

Joint i V. . Link i+1
c,i
Jointi-1  Linki-1 ’ Z; _Aamo
N | Zi1  Link i O\ @ min
m 4 Ve \ Fii
D, LN
\ Tisi
\
i \\
Iei
. \ ,
i \ Xi
a1 \\ Ol
A\
" V.V, \\
1 . \
®; 0, \\
Xi-1 \

Xu

Yu
Ovu

Zy

Figure 3.2. Recursive Newton-Euler Formulation notations on the base of the standard of
the DH convention.
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Moreover, Figure 3.2 also shows that the rover motion is referred with
respect to the universal frame Oy (Xu, Yu, Zu). In other words, the coordinate
frames and equations of motion of each link are expressed to the universal
frame. The universal frame is chosen at the center of platform forming yy-zy
horizontal plane, which is parallel to ground plane; and Xy axis is normal to the
ground plane directed upward. The coordinates frames are assigned at joints by

utilizing from DH convention as explained in Chapter 2.

3.3. Newton-Euler Recursive Relations

The computations for determining the equations of motion will be
complicated if the calculations are considered with respect to the fixed base
frame [55], because the inertia matrix I; depends on the orientation of link 1.
The efficient solution is to consider the dynamic and kinematics of each link
expressed to its own coordinates frame [49]. Therefore, the equation of motion
of each link is expressed to its own coordinate frame instead of making it
expressed to the base frame following the notations made by Walker and Orin
[61], See Appendix D. The basic idea behind the Newton Euler recursive
formulation is broken down into two steps, i.e. forward and backward

recursion.
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3.3.1. Forward recursion
This approach transforms the output generalized velocities and
accelerations from the universal frame to the end-effector frame, link by link in

iterative techniques, using the relationships of moving coordinate systems [49].

The generalized coordinates (links positions, velocities, and
accelerations) starting from universal frame Oy and ending at end-effector Oy

frame can respectively and briefly be symbolized

v ¢ 0] ,i=U
Qi = : ]T (3.2
[0 0 6,] ,0<i<n-1

i+1

[v ¢ 6] .i=u
Qiyy = . AT (3.3)
[o 0 6 ] ,0<i<n-1

i+1

4., = R (3.4

For 1= U, qp describes the platform orientation with respect to universal
frame. The platform of the rover is not bolted on any stationary point
anymore, and its attitude is under the influence of the ground heights and the

configurations of the four legged manipulators. As explained in chapter 1, the
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attitude angles of the platform are evaluated with respect to the universal
frame, i.e. roll (@), pitch (), and yaw () angles respectively rotate about yy,
Zy, and Xy axes. These attitude angles are forming 3X1 vectors filled up with
the generalized position, velocity, and acceleration coordinates of the first

iterative step, respectively, as follow

a,=[v ¢ 6] (.5

a-[v ¢ 0] 6
and,

do=[v7 ¢ 5]T (3.7)

The homogeneous transformation matrix of base frame Oy with respect

to universal frame Oy is

cpcld —cosOcy +sgsy  cPsOsy +socy
RU=| s@ cOcy —cOsy (3.8)

0

—s@gcl s@sOcy +chsy  —sPsOsy +cocy

And the homogeneous matrix of the universal frame Oy with respect to

the base frame Oy is given as the inverse of the above matrix
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cgcl s@ —s¢gcd

R} =| —cgsOcy+sgsy cOcy  sgsOcy+chsy (3.9)

U

cogsOsy+spcy —cOsy —s@sOsy+chcy

According to initial values of the system, the angular velocity and
acceleration of universal frame Oy with respect to base frame Oy expressed in

universal frame itself can be, respectively, given as

ol =[(0V), (o}), (oV), ]T (3.10)

and,

ol =[(6Y), (a0), (oV), ]T G11)

Moreovert, the linear velocity and acceleration of universal frame Oy with
respect to base frame Oy expressed in universal frame itself can be, respectively,

given as

. . T
VE:R(‘)J.|:() m 0} (3.12)

and,

. . T
W=[-g 0 O]T+R(‘j-[0 M o} (3.13)
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g is a gravity acceleration pointing downward of Xy-axis, and its

magnitude is equal to 9.81 and 3.63 m/ s according to sea level of the earth and

. U
Mars surface. Vv

.U . . . . .
v and VvV vectors are treated in projection onto inertial

coordinate system referenced to the universal frame Oy.

The position vector from the universal frame Oy to base frame O

expressed in base frame is

'=[0 0 of (3.14)

Following the computational algorithm as in Appendix C, The angular

velocity propagation for the base link when1=U

oy =R} (0] +q, |

cgco s@ —S¢co Y (3.15)
=| —cgsOcy +sgsy  cocy  spsOcy +Cgsy |- @YU+ @
CPSOSy +SgCy  —COSy  —SPsOSy +Cgcy )

The angular acceleration propagation for the base frame when 1= U is

<0 _ PO (U, == U, -
oao—RU(mU+qO+oaqu0)

cgco s@ —s¢cl 7 74 (3.16)
U

=| —cgsbcy+sgsy  cOoy  spsOcy+chsy |-| D+ 4 [+oOUx| ¢
CPHSOSy+SgCy  —COSy  —SgsOsy +Ccy 0 0
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The linear acceleration propagation for the base link when 1= U is

Vi = dpxry+ ofx (px1y )+ RV

-8
0 0 cgco s@ —s¢cl = = (3.17)
— 0 0 0 10,, —10,,
=WyX| 0 [+@;X| 0yx| 0 |+|-CgsOcy +sgsy cOcy  sgsOcy + cosy —_—
0 0 CPsOsy +sgcy  —COSy  —S@sOsy + cocy 0

The velocity and acceleration of the platform center of mass, when1= 0,

are computed respectively as follows:

0 _ .0 0 0
Vc,o - (‘OOX rc,o'i_ Vo

0
. . (3.18)
=wm,x|0|+v,
0
and,
-0 0.0 0 0, .0 - 0
Vc,o - (Dox rc,0+ (DOX((DOX rc,0)+ Vo
0 0 (3.19)
=apx| 0 |+oix| x| 0| |+ v
0 0

Once the velocities and accelerations of the platform center of mass are
computed, the inertia force and moment acting on the platform center of mass

can be computed. Assuming the viscous damping friction is negligible, the total
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external force acting on each link center of mass is given by the Newton’s
second law, and whilst the moment acting on each link center of mass is given
by Euler’s equation. Newton-Euler formulation for the platform center of mass

can be presented as:

0 - 0
f, =myv_, (3.20)
and,
0 = 1,00+ )% (Iocog) (3.21)

For 0< 1 <n-1, q;;; describes the motion of the manipulator starting
from link 1 ending at link 4. n represents the number of joints of the
manipulator. Our mobile robot employs four revolute joints for each
manipulator; no any prismatic joint is employed. Thus, the notations of output
generalized position coordinates will match the joint angles. Each entry inside

Qi+1 is composed of a 3X1 vector

q,= [0 0 el]T

q, = [O 0 ez]T (3.22)
q; = [O 0 63]

q,=[0 0 o[
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As well as, for 0< 1 <3, the generalized joint velocities and joint

accelerations are, respectively, as shown bellow:
d., = [0 0 OM]T (3.23)

q.=/0 o0 §,] (3.24)

Now completing the algorithm as shown in Appendix C and D, The
angular velocity propagation for link 1 when1=0

(Di = Ri) (mg""éhj

c, S, 0 0 525
=0 0 -1+ o0
-S, C, 0 0,
The angular velocity propagation for link 2 when1=1
o, =R} [(D}+q2j
¢ 5 0 0 (3.26)
=l0 0 1||e+|o0
S, -C, 0 0,
The angular velocity propagation for link 3 when 1 =2
=R (03+4,)
-C, =S, 0 0 (3.27)
=S, -C, O|]|wH+|0
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The angular velocity propagation for link 4 when 1= 3

) =R{(0}+4,)
C, S, 0 0 (3.28)
=/-S, C, O||w+|0
0 O 0

Now, the angular accelerations propagation starting from link 1 and
ending at end effector link can be computed using the formula

=i+l

©;, = R;H (0):_'_ qi+1+ OJ:X qi+1) (3.29)

The angular acceleration propagation for link 1 when1=10

-1 1 e 0 e 0. -
o, =R, (m0+q1+w0xq1)

¢ § 0 0 0 (3.30)
= 0 0 -1 (5)8+ 0 +(Dg>< 0
-S, C, 0 0, 0,

The angular acceleration propagation for link 2 when 1= 1

N YA [ s
0)2—R1(031+q2+(,01><q2)

C, S, 0 0 0 (3.31)
=0 0 1| a+| 0|+wx|0
S, -C, 0 0, 0,

The angular acceleration propagation for link 3 when 1= 2
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-G -5 0 0 0 (3.32)
=S, -C, 0[|@*+| 0 |+wx|0
0 0 1 0, 0,

The angular acceleration propagation for link 4 when 1= 3

s 4 pbdf 3 3 .
0, =R; (0)3+q4+(03><q4)

C S 0 0 0 (3.33)
=[-S, C, O0||di+| 0 |[+wx| 0
0 0 1 0, 0,

And now, the linear acceleration propagations starting from link 1 to link
4 are computed by following this algorithm
. i+l =i+l i+1 i+l

V=@ %+ ol x (of“x ! ) +R"V (3.34)

i+l i+1 i+1 i+l i+1 i+1

The linear acceleration propagation for link 1 when 1= 0 is

1 el 1 1 1 1 1.0
V, = ®,XT, +0)1><(0)1><I‘1 )+R0V0

0 0 ¢ § 0 (3.35)
=ax| —d, [+ox| opx|—=d, [ [+| 0 0 —1|-V;
0 0 -S, C, 0

The linear acceleration propagation for link 2 when1=1 is
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Vi =@l r22+co§x(oo§>< rj)+Rfv}

0 oy [c, s, o (3.36)
=@x| 0 [+wix| x| 0| [+ 0 0 1|V
0 0|) |s, -C, 0

The linear acceleration propagation for link 3 when 1 =2 is

3 3 3 3 3 3 35,2
\& —033><1r3+0)3><(0)3><r3 )+R2V2

a, a, -C, =S, 0 (3.37)
=@x| 0 [+@x| @ix| 0 [|[+| S, -C, OV

0 0 0 0 1

The linear acceleration propagation for link 4 when 1= 3 is
Vi = @yxT, + cojx(coix rf)+R§\'I§

a, a, C, S, 0 (3.38)

=jx| 0 |[+o;x| @jx| 0 | |+]-S, C, 0|V}
0 0 0 0 1

The velocity and acceleration of the center of mass of link 1, starting

from link 1 and ending at link 4, can be computed respectively as follows:

i+l — d)i+lxri+1 + (D?HX ((D?HXI'HI )+ V?H

i+l c,i+l i+l i+l C,i+l i+l

(3.39)

c,i+l

The linear acceleration of center of mass of link 1 when 1= 0 is
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S U IO T PRI .l
Ve _O‘)lxrc,l+o‘)lx(0‘)lxrc,l)+vl

0 0
-1 dl 1 1 dl .1 (340)
=X ? +(,01X ®, X ? +V1
0 0

The linear acceleration of center of mass of link 2 when1=1 is

2 .22 2 202 2
Ve = (DZXI‘C’2+0)2><(602><rC’2)+V2

0 0 (3.41)
=@3x| 0 [+wox| wix| 0 [+V3
0 0

The linear acceleration of center of mass of link 3 when 1= 2 is

-3 _ 3 3 3 3 3 -3
Ve —033><rc’3+033><(o)3><rc)3)+V3

C

0 0
2 2 (3.42)
=o}x| 0 |+oix|oxl 0 |[+V]
0 0

The linear acceleration of center of mass of link 4 when 1= 3 is

4 .4 4 4 4_ 4 .4
Vea = Cl)4><rc,4"'034><((’34><rc,4)"'v4

—a, —a, (3.43)
=a;x| 0 |[+oix| ojx| 0 [|[+V]
0 0

Starting from link 1 and ending at link 4, inertia force f' acting on the

center of mass of link i expressed in the frame O; is given by
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- i+]

fii++11 =m,,V i, (3.44)
Inertia force acting on the center of mass of link 1 when1=0is

fl=m,v, (3.45)
Inertia force acting on the center of mass of link 2 when1 =1 1is

f; =m,Vv, (3.46)
Inertia force acting on the center of mass of link 3 when1 = 2 is

f)=m,v, (3.47)
Inertia force acting on the center of mass of link 4 when1= 3 is

f;=m,yv, (3.48)

Starting from link 1 and ending at link 4, inertia torques acting on the
center of masses of link 1 expressed in the frame O; is given by are given by
following this algorithm:

=1 00+ ol (1,0 (3.49)

i+l i+l

Inertia torque acting on the center of mass of link 1 when1 = 01is



1 00 1 00
m, (dl )2 N 1 m, (dl )2 1
0 0 0j|mw+mX 0 0 0o,
12 12
0 0 1 0 0 1

Inertia torque acting on the center of mass of link 2 when 1=1is

. 2
T, = Izw§+m§x(12m2)

000 00 0
=0 0 0[x@2+wx||[0 0 0|0,
0O 0 O 0 0 O

Inertia force acting on the center of mass of link 3 when 1=21is

3T 3 3 3
T, —I3w3+co3><(13c03)

Inertia force acting on the center of mass of link 4 when 1=31s

4 . 4 4 4
T, —I4oa4+w4><(l4o)4)

111

(3.50)

(3.51)

(3.52)

(3.53)
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3.3.2. Backward recursion

Inverse dynamics approach computes the forces and torques recursively
from link 4 to link 1. After computing the inertia forces and moments exerted
on the center of masses of links, backward computational procedures can be
followed by evaluating one a link at a time starting from the end-effector frame

and ending at the base frame as shown in recursive form:

Fii = R§+1Fii:1l + fii (3.54)
T =R (T (R70)XES )+ (Rin'+ o, )<+ 6.39

F, and T are external force and moment exerted on the end-effector

link in frame Oy (X4, V4, Z4). These can be defined in 3%1 vector as

E=[F -F 0] (3.56)

$=[0 0 o] (3.57)

The force exerted on link 4 by link 3 when 1 =4 is

E = RIES+!

F

=R} ‘RIx| —F, |+f; (3.58)
0



The force exerted on link 3 by link 2 is

E = RIF4 £

C, -S, 0
=[S, C, O|F4+f
0 0 1

The force exerted on link 2 by link 1 is

F, =RIF +f;

-C, S, 0
=|-S, -C, O|F+f
0 0 1

The force exerted on link 1 by link 0 is

F =R.E +f]
C, 0 S,
=S, 0 -C,|-E+f]
0 1 0

The force exerted on link 0

F} =R{F+1;

C, 0 -S
=S, 0 C, [E+f]
0 -1 0

The force exerted on link 0 can be transformed into universal frame Oy

113

(3.59)

(3.60)

(3.61)

(3.62)
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FOU = ]R(I)JFO0
cgcld —CosOcy + Sgsy  CpsOsy + sgcy (3.63)
=| s0 chcy —CcOsy -F)

—sgcl  sgsOcy +cCogsy  —S@gsOsy + Cgcy

The moments exerted on link 1 by link 1-1 can be computed by following

this algorithm

T =R!

i i+1

(T + R B h+ (41 ) x £+, (5.64)

i+1 i+1

The moments exerted on link 4 by link 3 when 1= 4 is

T, :R‘S‘(T§+(Rirf)szS)+(rf+rc‘f4)xfj+rj

O 34 _Fn 34 _a4 (3.65)
=R&[JO|+[RE[ O [|x| B [[+]| 0 |+] O ||xfi+1}
0 0 0 0 0

The moment exerted on link 3 by link 2 when1=3 is

T = R (T4 (RIS 0 12+

C, -S, 0 C, S, 0]]a, a, | |-0.5a, (3.66)
=S, C, O|T/+||-S, C, O O0]|[xE [+]| 0]+ 0 |[|xff+7
0 0 1 0 0 1]]|0 0 0

The moment exerted on link 2 by link 1 when1= 2 is
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T} = R2(Ti+ R X F )+ (24 12,) x £+ 73

-C, S, 0 -C, -S, 0]fo0 0] [o 567
=[-8, —C, O|T2+|| S, —C, O[[0O||xE|+|[0]+| 0] |xf2+1
0 0 1 0 o0 1o 0| o

The moment exerted on link 1 by link 0 when1=11is

Tll = Rlz (T22+(R121'11)XF22)+ (1'11+rc1,1)><f11+1:i

C, 0 S, c, S, o][o 0 0 568
=[S, 0 —C, | T2+|| 0 0 1||=d,||xF|+||-d, [+]0.5d, ||xf+1]
0 1 0 S, -C, 0]| 0 0 0

The moment exerted on link 0 when 1= 0 is

) = RO (T4 (R )+ (4 10 x £+

C, 0 -8 C, S o0]]Jo 0] [0 (3.69)
=[S, 0 C, |[T+[| 0 0 =1[|0||xE |[+||0][+|0]]|xf)+1
0 -1 0 -S, C, 0[]0 0| |0

The moment exerted on link 0 can be transformed into universal frame Oy

TOU = R(l)J To0
cgcld —CoPsOcy +sgsy  CPsSOSy + Sgcy (3.70)
=| s0 clcy —COsy T}

—S¢gcl  sgsOcy + CgSy  —S@SOSy + Cocy

The forces and torque exerted by the actuator at joint 1 is
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(Fii )T (R}, z,); input force for prismatic link
Q= (3.71)

(Tii )T (R!,z,); input torque for rotational link

All joints used are revolute type, thus the input torque Q; at each joint is the

sum of the projection of Tii onto zy (Xu, Yu, Zu) about the zy axis

Q = (Tll )T (R§+IZU) (3.72)

The dynamic equation at joint 1 when 1 =1 is given by

Q =(T) (Riz)

C, 0 -S/]fo (3.73)
T
=(T) ||s 0 ¢ []o
0 -1 0|1

The dynamic equation at joint 2 when 1 =2 is given by

Q. =(T:) (Ryz)

(e 0 s, 70 (3.74)
=(T7) |[S, 0 =C, %[0
01 o0 |]1

The dynamic equation of joint 3 when 1 = 3 is given by
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([-¢ s, o]0 (3.75)
=(T3) || -S; -C, 00
0 0 1|1

Finally, The dynamic equation at joint 4 when 1= 4 is given by

Q. =(T) (Riz)
: C, =S, 0[]0 (3.76)
=(T) ||ss G,
0
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Chapter Four

4. System forces and moments

The system forces and moments are transformed to platform universal
frame from outermost link till the innermost, link by link. The system forces
are generated from the system weight of rover, inertial forces on the center of
mass of links, and direct contacts between wheels and ground surface

expressed as the normal force, and frictional force.

The longitudinal and lateral forces exerted on wheel are relatively small
values and even avoided here in this work. Furthermore, the moments between

wheel and surface are also negligible.

4.1.1. System weight

Benefiting from Newton-Euler recursive method, the total weight of
rover will be evaluated at the platform universal frame. This is resulted from

transforming the gravity force of each link starting from wheel link to platform
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link, link by link. In other meaning, the system weight is defined as a
gravitational force vector of a system mass constant times the acceleration of
gravity that points downward vertically in x;; of the platform universal frame
Og.

System weight =[-mg 0 0[ 4.1

Where, m is the system mass constant of rover links and is equal to
12kg, g is the gravitational acceleration produced in a body due to the Mars'
gravitational attraction; Its SI unit is m/s? and its values on the sutrfaces of the

earth and Mars, respectively, ate 9.8m/s? and 3.63 m/s2.

The vertical projection of system weight from center of mass will be
distributed among the contact wheels on the base of joint configurations,
ground geometries, and rover attitude. The amounts of distributed weights on
wheels are simply defined as wheel pressures on ground contacts. In the case of
symmetric configurations and flat surface, the projection of center of mass will
be at the middle area of the support polygon, so the system weight will be
distributed equally among these wheels. However, if the changing occurs in

joint configurations and ground geometry during the travel; the position of
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vertical project of center of mass will change and the amounts of wheeled

pressures on ground will already change.

Wheel universal frame Oy, is assigned at each contact point in order to
represent the part of distributed weight on that wheel. Oy and Oy are

contingent.

\

B =

0 (4.2)
0

4.1.2. Normal force

The normal force is inspired from Newton’s third law which states that
for each action force there is reaction force with the same magnitude and
opposite direction. The contact always generates reaction force acting

perpendicular to the contact surface expressed in surface frame O,

Whenever any wheel of the rover are in contact with ground, the
gravitational or weight force acting on wheel will apply to the ground, so the
ground will react on the wheel with normal force. The magnitude of the normal

force is equal weight force component applied in Xg axis. The direction of the
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normal force is instantaneously perpendicular to the surface in Xg axis. In the
case of the flat surface, the normal force is coplanar to the positive axis Xy,
direction. However, if the wheels choose their footholds on inclined or smooth
uneven surface, the normal force will make angle relatively to wheel universal

frame Oy

In static stabilizing condition, the number of supporting wheels on
ground can vary between 3 and 4 for a quadruped robot. In the case of
symmetric configurations and flat surface, the weight force acting by
supporting wheel on the ground is equal the weight of system rover divided by

the number of supporting wheels

mg
F,=— 4.3
" nc (4.3)
Where, F, is the static normal force acting from the ground on the
supporting wheel. mg is the weight of the rover acing on ground and directed
coplanar with respect universal frame. nc is the number of wheels which are in

contact with the ground. However as shown in Figure 4.1, in the case of non-
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symmetric rover and non-uniform surface geometries the specific equation 4.3

is totally not capable for evaluating the normal forces.

Xu
Oy .:‘”
Zy
E FnSR Fnsrr
A\
v

Figure 4.1. Normal forces acting on wheels perpendicular to surface.

This rover dealt with unknown reactions for four, three, and two legs;
the system of four legs has three equations and four unknown so it is
considered as indeterminate system of equations, while the system of three legs
has three equations and three unknowns so it is considered determinate system
of equation Furthermore, the two legs system has two variables and provided

with two equations, thus this is considered determinate system of equation.
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4.1.3. Frictional force
In general, the friction is resulted from the pressing two surfaces with
each other, and generates deformation, heat, as well as frictional force in the
opposite direction of motion. The types of frictions are rolling, sliding slipping
frictions. In any way, in pure rolling motion there is no sliding or slipping; and
rolling on solid surface yields no rolling friction at all. The direction of motion
is always perpendicular to the normal force and tangent to surface. The rolling
friction occurs between wheels and contact area surface. Whereas rolling
frictional force is a function of normal force acting from ground on wheel and
coefficient of rolling friction.

F, =k (4.4)

Where, F¢is the rolling frictional force occurred between the wheel and
the soft terrain. [ is rolling coefficient friction between two surfaces. F, is the
normal force exerted on the wheel. However, rolling friction occurred when
the rover is moving on soft terrain. Thus, the rolling coefficient of this work is

equal zero because we assume solid surface.
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4.1.4. Wheeled motor torque

The motor exerts required amount of torque that enables wheel to grip
with surface and propel it in tangent direction of the surface. The motor torque
is equal the cross product of traction force and wheel radius.

Tm=r1xF, (+5)

Where, Ty, is the motor torque, and F; is the traction force in the
direction of tangential line of surface. The motor torque rotates about z3 axis in

the direction of wheel rotation.

Finally, the resultant of forces and moments exerted on wheel end-
effector are computed with respect to frame Og (Xs, ¥s, Zs) as shown in Figure

4.2, and it can be obtained respectively in two 3 X 1 vectors.

E=[F -F 0] (4.6)

n

5=[0 0 0] 4.7)

Because the wheels are locomoted on solid surface as assumed, the

rolling friction is negligible in this work.
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Z4
O
4 Y4
X4
X3 AXw
F,
F¢
< > < 03
Ys Og Yw Ow
A 4

Figure 4.2. External forces and moments exerted by ground on end-effector projected in

frame Og.
Where,
F,  normal force perpendicular to contact surface and in xg axis
direction.
F¢ frictional force tangential of contact surface in opposite direction

of wheel linear motion in the direction of -y axis.
Fw  weight acing on center of wheel and directed downward in -xy

axis of wheel universal frame Oyy.
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T, motor moment in direction of wheel rotational motion about z3-
axis.

S Slope angle of inclined surface.

The summation of all moments (resulted fro normal forces, inertial
forces, gravity forces exerted on center of mass of links, and torques exerted on
link) about the contact wheels are equal zero. Thus, this is the definition of

balanced equation.

Now for the four contact legs, the summation of all moments can be

given as in equations 4.9, 4.15, 4.21, and 4.27 as shown respectively in:
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0
Z Mirr =| 0

0
(= k) X (RS B ) (it ) % (R UGS 4 (r =t ) < (R U Bl )+
(e =) X (R Ve FARE ) (Y e T ) (R e FE e (1 = ik ) % (R S FR )+
(= T ) % (R Y IR )4 (1 = i ) < (R G B0 ) (1 = 1) (R EIR )+
(= o) X (R R )+ (1 = i) x (RUELE I+ (1 — e ) x (RY 21 )+
(rc[,J3LF_ r4URF) X (R;JLFf;IfFF )+ (rclilLF_ r4URF) X (RELFfffFF )+
(rc[,J3LR —Iie) X (RELRf;IIjl? )+ (rc[,ilLR —Iie) X (RELRffLL}? )+

U _4RF, pU _3RF, pU _4RR U _3RR
R reTarr+ RageTire + Rypr Tarr + R3pr T3rr +

U _4LF, pU _3LF, pU _4LR, pU _3LR
RyrTarrt RypTp+ Ry Tarr + Ryr T3r +
0
U 2R, pU IR, pU 2L, pU _IL , pU _OR
RorTor + RipTir + Ry Top + Ry 1p + Rgp 7o ={ 0
0 (4.8)

The above equation can be abbreviated with notations and it provides for

definition of the equation of balanced,

FnSRR ’ Bl + FnSLF' B2+ FnSLR ’ B3+ Ml =0 (4-9)
Where,
T
B, = (rzgzk_rﬂzp)x(RgRR [1 -l O] ) (4.10)
B, = (r;iF_rfRF)X(RgLF [1 —u O]T) (4.11)
B, = (r4ULR - r4URF) X (R;JLR [1 —H O]T) (4.12)
and

1

M, =Z(rclj—rfRF)x(RiUfii)—kZRiUﬁ (4.13)
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0
ZM4RR =10

0
(e = P ) % (R FERE )+ (e mi ) (RS )+ (el = ) % (R FSLE )+
(rcI,J4RF —Iyge ) X (RERFff]?]f )"‘ (rcI,J3RF —Iygg ) X (R;JRFf;?FF )+ (rcI,J4RR —Iyge ) X (RERRf:];{];{ )"‘
(rcI,JSRR - rfRR )X (R;JRRf;l?l? )"‘ (rc[,J2R - rfRR )X (R;Jszzéz )+ (rcI,JIR - rfRR ) X (R}JRfllll{{ )+
(=T )X (RERESR )+ (= o) % (RIS )+ (o, — i) < (REL£2E )+
(rcL,Js LF— r4URR )X (R ;J LFf33 Iflf )+ (rcl,ilLF - r4URR )X (R thJLFf:L]]:F )+
(rcl,jSLR —Iyg ) X (RELRf;LL}? )+ (rc[,j4LR — Iy ) X (RELRffLLRR )+
R e Tane + RoreTire + Rigr Tark + R3re T3re +

U _4LF U _3LF pU _4IR U _3LR
RypTarr+ RypTip+ Ryr Ty + R3r T3k +

0
R Tor+ R TR + R TI+ R Tir+ RopTor = 0
0 (4.14)
FnSRF'C1+FnSLF'C2+FnSLR'C3+M2 =0 (4.15)
Where,
T
Clz(rﬁzF_rﬁzR)x(RgRF[l -l 0]) (4.16)
T
CZZ(rAiF_rA&R)X(RgLF[l —H 0]) (4.17)
T
C3:(rfLR_r4URR)X(R:LR [1 —u 0]) (4.18)

M, =Y (@S- )% (RUE )+ YRt (4.19)
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0
ZM4LF =0

0
(e =) (R G FORY (i = 1) % (R S PSR (1t = i) % (R FER )+
(rcL,J4RF - r4ULF) X (R ;J RF ffl?lf )+ (rcL,Js RF ™ r4ULF) X (R ;J RFf33RRFF )+ (rcl,ilRR - r4ULF) X (R ERR f: RRRR )+
(rcL,J3 RR r4ULF) X (R ;J RR f33 ll{{RR )+ (rcL,JzR - r4ULF )% (R g R fzzli{ )+ (rcl,JlR - r4ULF) x (R 1U R f111§ )+
(e =) % (RS} (1 =it < (R (o —ri o) (RYLEZE )+
(rchF —I4p) X (R;JLFfSLLFF )+ (rcI,J4LF —IyE) X (RELFf:LL}f )+
(=i ) < (RER I )+ (o= rite) % (R £i% )+
RERFrig + R;JRF":;EE + R}IJRRT::EE + R;JRR’EgEE +

U _4LF U _3LF U _4LR U _3LR
RyrTarr+ Rypp T+ Ryr Tarr + R3r T3r +

0
Rg}ﬂ%ﬁ+R1URT}§+RgLTglﬂ"‘RlULTilﬂ"‘R(l)JRtgﬁ =
0 (4.20)
FnSRF'D1+ FnSRR'D2+ FnSLR'D3+ M3 =0 (4.21)
Where,
T
D, :(lﬁaF_rﬁF)X(Rg}zF [1 -l 0] ) (4.22)
T
D, = (rszR_rfLF)x (RERR [1 —u 0] ) (4.23)
T
D, = (rﬂ_R_rﬁ_F)x(RgLR [1 -l O] ) (4.24)

1

M; = Z(rcg_mULF)x(RiUfii)_{— D Rt (4.25)
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0
ZM4LR =0
0
(e =) X (RS FERE )+ (el = i) ¢ (R G PR ) (1=l ) x (RGBS )+
(rcL,J4RF - r4ULR )X (R zltj RFfflif )"‘ (rcL,Js RF r4ULR )X (R ;J RF f33 1§FF )+ (rcl,J4 RR r4ULR )X (R ;J RR f;%? )+
(rcL,J3 RR r4ULR) x (R éj RR f331§1§ )+ (rcl,JzR - r4ULR) x (R g R f22 15 )+ (rcl,JlR - r4ULR) X (R 1U R f111§ )+
(e =) (RER£08 )+ (=) x (RIS )+ — i) < (RELEE )+
(e =it ) % (REEIE )+ (e = i) < (R )+
(=) % (RY E0 J+ (n =i ) x (R Y i )+
RERFrig + R;JRF":;EE + R}IJRRTXEE + R;JRR’EgEE +

U _4LF U _3LF U _4LR U _3LR
RyrTarr+ RypTip+ Ryp Tarr + R3r T3r +

0
Rg}ﬂ%ﬁ+R1URT}§+RgLTglﬂ"‘RlULT%lﬂ"‘R(l)JRTgﬁ =
0 (4.26)
FnSRF' E1+ FnSRR'E2+ FnSLF'E3+ M4 =0 (4-27)
Where,
T
E, :(rfRF_riR)X(R;JRF [1 —u O] ) (4.28)
T
E, :(rﬁzk_IfLR)x(R;jRR [1 —H 0] ) (4.29)
T
E3 :(rﬁF_rﬁR)x(RgLF [1 -l O] ) (4.30)

1

M, = Z(rcL,Ji_Iﬁ_R)x(RiUfii)_" D R (4.31)
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Normal Force Algorithm:
% Raght legs and left legs are in contact with ground,

if (RE> e && RR - ¢) & &(LF > ¢ & & LR - o)

if (Roll ~=0) & & (Pitch == 0)

Frgpr =2 M,@) (4.32)
D,(2)+D,(2)

F.srr =Fisrr (4.33)

Fr= Ll(z) (4.34)
B,(2)+B,(2)

Fsir =Fusie (4.35)

if(ROll == (0& & Pitch ~= 0)||(R0|| == (0& & Pitch == )

P = —2®) (4.36)
C,(3)+C,(3)

F sz =L1(3) (4.37)
B,(3)+B,(3)

Esir =Fisrr (4.38)

Esir =Fusrr (4.39)

End

End



if (RF > o && RR - ¢) & &(LF 5 0 & & LR o)

% Right legs are in contact with ground and left legs are without,

B @3
Coefficient = [ i )}

c3 o0
b=[-M,(3) -M,(3)]

x = inv(Coefficient) * b
Eoser = x(1)

Fisrr =X(2)

For=0

F

wsir =0

elseif (RF >0 & & RR 1 0) & & (LF > ¢ & &LR + o)

Yol eft legs are in contact with ground and right legs withont contact

0 D.(3
Coefficient = [ s )}

E3) 0
b=[-M,3) -M,(3)]

x = inv(Coefficient) *b

Fire =0
F =0

nSRR

Esir = x(1)
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(4.40)

(4.41)
(4.42)
(4.43)
(4.44)
(4.45)

(4.46)

(4.47)

(4.48)
(4.49)
(4.50)
(4.51)

(4.52)
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Fsir =x(2) (4.53)
End

if (RF > ® & & RR +- ¢) & &((LF > ¢ & & LR - o) ||(LF 5> o & &LR - o))

% Raight legs are in contact with ground and either left front or rear leg is without,
/GIT 164 4 24

0 B2 B,(2) B;(2)
Coefficient = 0 BB BB BO) (4.54)
G3 0 GCQ3) GG

H (1) Hy,(») H1) H, (1)

b=[-M,(2) -M,(3) -M,(3) -System_Force U(1)]' (4.55)
x = inv(Coefficient) *b (4.56)
F o = x(1) (4.57)
F e =X(2) (4.58)
Esir =%03) (4.59)
Esir =x(4) (4.60)

elseif (RF > ¢ & &RR 1) || (RF 5 0 & &RR > ¢)) & &(LF >0 & & LR > o)

YoEither right font or rear leg is without contact and left legs are in contact,

D,(2) D,2) 0 D2
Coefficient = D,(3) D,(3) 0 P,(3) (4.61)
E(3) E,(3) E@3 0

H (1) Hy,(1) Hy(1) H,(D)

b=[-M,(2) -M,(3) -M,(3) -System_Force U(1)]' (4.62)
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x = inv(Coefficient) *b (4.63)
Eigre = x(1) (4.64)
Fsre =X(2) (4.65)
Fsur =x(3) (4.66)
Fisir =x(4) (4.67)

End
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4.1.5. Constraints
The normal force is positive, if the wheel remains in contact with
ground. Otherwise, it is equal zero.

E >0 if leg > ®; means that the wheel is in contact with ground.

F =0 if leg = o; means that the wheel is not in contact with ground.

During motion of rigid wheels on rigid surface, if motor exerts high
torque, then wheel will slip and provide low speed. Thus the traction force
must be less or equal the frictional force to make rigid wheels capable for
gripping with rigid surface.

F <uF (4.68)
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Chapter Five

5. Results and discussion

This work concludes that the rover will be dynamically stable if it meets
this condition: "The universal moment at platform resulted from gravity force,
inertial forces and torques exerted on center of mass of each link, and normal

forces exerted on end-effectors must not equal the critical moments".

The platform can be represented as a collection of effects of system
normal forces, system weights, and system inertial, since the backward dynamic
system propagates those forces and moments from outermost to innermost

link by link starting from end-effector till the platform link.

The critical moment is the required moment to rotate the rover and lose
one side’s connections with ground in order to rotate the rover about the

opposite sides. The four critical moments about edges of contact points are
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threshold limits evaluated by substituting in universal moment with zero

normal forces for the opposite side as shown in Figure 5.1,

FoLr FuLr

—TC Rear
TC,Front | .

v Zy
Figure 5.1. Four critical moments

The left legs are substituted zero normal forces in balance equations
4.14 and 4.8, respectively, in order to find the normals on the right critical

contact line,

_~M,3)
nSRF C1(3) (51)
— _Ml (3)
FnRR - B1(3) (52)

The critical moment required to turn the rover over the right side takes
place when the left legs are uncontact with ground and the equations 5.1 and

5.2 are substituted in equation F.8, we obtain
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TC,Right — rfRFX<RgRFFSSlI{{lf)+rfRRX(RgRRFSSlI{{lI{{)+
rc[,J4RF (R}IJRFf:Il{{l}‘:)+rc,U3RFX(R§JRFf331§§)+rg4RR (RERRf:ll{{R )+rc 3RR ( 3RRf;I§I§)+
c2R (RZRf 1];)+rcL,JlRX(R}JRflll§)+rcL,JORX(R(I)ij(?l]§ )+rcl,J1LX(R}JLf11LL)+rcl,JzLX(RgLf22LL)+ (5.3)
rc?}LFX(RgLFf;IIj]f) L 4LF (R4LFf4 ) ,3LRX(R;JLRf33[]:R )+r 4LR (RELRij]:RR)
R4RFTi§]§+RI;RFT3RF+R4RRT4RR+R3RRT§§§+R}1JLF‘C211:€+RéjLFrgt]l::'i'R}tJLRT?t]I:§+R3LRTgt§+

U 2R, pU IR, pU 2L U _OR
RZRTZR+R1R'51R+R2LT2L+R1LT1L+R0RT0R

The rear legs are substituted zero normal forces in balance equations
4.20 and 4.8, respectively, in order to find the normals on the front critical

contact line,

_ _M3 (2)

FnSRF - D1(2) (5-4)
_ _M1(2)

Fostr = B,2) (5.5)

The critical moment required to turn the rover over the front side takes
place when the rear legs are uncontact with ground and the equations 5.4 and

5.5 are substituted in equation F.8, we obtain

TC Front — TFRFX(RgRFFsslgFF)+r4LF (RSLFFSSIEI}‘:)
rcL,J4RFX(RzltJRFffRR§) L,J3RFX(R§JRFf33]§]f) U4RRX(R}1JRRff1§1§) l,J3RRX(R§JRRf33RRRR)
czR <R2Rf2R ) ,1RX(R}JRf111§)+TSORX(RBJRf<())I§)+rcI,J1LX(RHf1%)+rc[,JzLX<RgLf221]:)+ (5.6)
rgLFX(R;JLFf;I%FF)Jrrc%LF (RELFffb:F)*'rgsLR (R;JLRf;EIl{{)+rcI,J4LR (RELRfffll;)+

4RF 3RF 4RR 3RR 4LF 3LF 4IR 3LR
R4reTarp T R3ppT3re + Ryrr Tarr + R3pr T3rr + RareTarr + RapT3ip+ Ry Tarr + Ry TR +

U 2L L O0R
R2RT2R+ RlRT1R+ Ryt + RILTIL+ RORTOR
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The right legs are substituted zero normal forces in balance equations
4.26 and 4.20, respectively, in order to find the normals on the left critical

contact line,

— _M4(3)

Fosr = EG) (.7)
_~M,03)

FnSLR - D3 (3) (58)

The critical moment required to turn the rover over the left side takes
place when the right legs are uncontact with ground and the equations 5.7 and

5.8 are substituted in equation F.8, we obtain

TC,Left — rfLFX(RgLFFSSb:F)+rﬁRX(RgLRFSSLLl§)+
rg4RFX(RSRFf:1§FF)+rc,U3RFX<RERFf33g)+YS4RRX(R}1JRRf:1§1§ )+r<}:TSRRX(R;JRRf331§I§)+
rcl,J2RX(R5JRf22]§)+rcl,JlRX(R1URf11RR )+rcEJORX(R(gJRfOOI§)+rcl,JlLX(RIULf11[]j)+rcL,J2LX(R5JLfZZII:)+
rc[,JsLFX(RELFfssLL}f)+rc[,J4LFX<R}1JLFf:1]:FF)+rg3LRX(R;JLRf331%1§)+rc[,j4LRX(R}1JLRf:I%I§)+
RERFTig*' RERF@EE'*‘ RERR‘EiEE + Rykkrgﬁﬁ + RELFTZ‘EEJF RELF‘L%EE"' RELRrjiﬁ + RELR&%E +

U 2R, pU_IR,pU 2L, pU_IL, pU _OR
RorTor +Rig TR + Ry 150 + Ry 1L+ Rop TR

(5.9)

The front legs are substituted zero normal forces in balance equations
4.26 and 4.14, respectively, in order to find the normals on the rear critical

contact line,

— _M4(2)
Fisrr = E.Q) (5.10)
P, =L@ (5.11)

nSLR C3 (2)
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The critical moment required to turn the rover over the rear side takes
place when the front legs are uncontact with ground and the equations 5.10 and

5.11 are substituted in equation F.8, we obtain

SRR U U pSLR
TC Rear — r4RR (RSRRFSRR )+r4LRX(RSLRFSLR )

U U p4RF U 3R U (4R U (3RR
T 4RFX (R4RFf4RF)+rc3RF (R3RFf3RF)+rc4RR (R4RRf4RR)+rc3RR (R3RRf3RR)+
I

U U ¢2R U U ¢IR U U cOR U UglL), .U U p2L
c,2RX<R2Rf2R )+rc,1RX(R1Rf1R )+rc,0RX(R0RfOR )+rc,1LX(R1LflL )+rc,2LX(R2Lf2L )+

U 3LF U U ALF U U ¢3LR U U (4LR
rc,3LFX(R3LFf3LF) L 4LF (R4LFf4LF )+rc 3LR><(R3LRf3LR ) L4LR (R4LRf4LR )
4RF , pU _3RF, pU 4LF U _3LF, pU 3LR
R4rrTarp+ R3RpT3Rp+ R4RRT4RR + R3RR T3RR + R4LFT4LF+ Ryptapt R4LRT4LR + R3LRT3LR +

U 2R, pU _IR,pU 2L, pU _IL OR
R2R72R+R1R71R+R2LT2L+R1LT1L+R0R

The on-line executions of set of manipulations and locomotions are
presented here over various types of surface geometries; this chapter studies
and analyzes the normal forces, platform attitude, inertial effects, gravity forces,
and dynamic stability margin for different surface geometries, and variable
inertial accelerations, movable rover configurations under the considerations of
being symmetric or non-symmetric form. In the case of symmetric
configuration, the rover attitude (roll, pitch, an yaw) harmonizes the surface
geometries, otherwise the joint configurations importantly contribute in
attitude calculations. This chapter covers important examples provided with
tests required to integrate all factors with each others in algorithmic and

computational manner to deeply study their influence on dynamic stability.



1. Wheels, RCJ, LCJ, RD]J, and LDJ motions on flat surface.
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This example studies the effect of acceleration of wheels and variable

configuration of joints. The rover locomoted forward on a flat surface and

subjected to three tests done in wheels accelerations 2, 4, and 5m/s® as

represented in black, green, and blue curves, respectively. In addition, the rover

configurations of four manipulators are manipulated in symmetric manner as

shown in table 5.1:

Table 5.1. conf 1 — conf 2

elR eZR e3RF e:‘»RR elL e2L O3LF 63LR

T V4 T V4 4 V4

conf1]| 0 3 3 3 0 3 3 3
T T T T

conf 2| 0 0 ) ) 0 0 4 )

Moreover, the platform attitude (roll, pitch, and yaw)

with the flat surface as shown in Figure 5.2

platform orientation angles w/2 universal frame

1 h e m L ______________
| | | | | | | >
@ | | | | | | | — a, = 2m/s
| | | | | | | = Am/s?
~ o T T T T T T T Bw m Sz
il | | | | | | | —_ a, = 5m/s
| | | | | | | - -
1 I I I I I I I I I |
o 20 40 60 80 100 120 140 160 180 200
1 _________
| | | | | | | | | |
| | | | | | | | | |
@ | | | | | | | | | |
~ o T T T T T T T T T 1
£ I I I I I I I I I I
| | | | | | | | | |
1 I I I I I I I I I |
o 20 40 60 80 100 120 140 160 180 200
o
| | | | | | | | | |
@ | | | | | | | | | |
| | | | | | | | | |
T O T T T T T T T T T 1
| | | | | | | | | |
| | | | | | | | | |
1 I I I I I I I I I |
o 20 40 60 80 100 120 140 160 180 200
Time (s)

Figure 5.2. Platform attitude.
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Furthermore as being symmetric and forward locomotion, the normal
forces exerted on the wheels are distributed in equal manner; the front legs
share the same value; and rear legs as well, as shown in Figure 5.3. The effects
of normal forces were significantly propagated from outermost link (wheels)

into innermost links (platform).

Normal force exerted on contact wheels

Time (s)

Figure 5.3. Normal forces

Figure 5.3 shows the front legs having the same vales, which increases in
direct proportional to wheeled accelerations and shoulders” angle, while the rear
legs were decreasing with respect the mentioned factors, wheel accelerations

4m/s* made the rear legs with 0.5294 Newton as normal forces at time 200s,
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and 5m/s” made the rear legs without contact with ground at times 123 second.
The loss of rear legs’ connections with ground endangers the situation and
threatens the rover’s stability; because the rover will undergo to lateral tumbling
about the front legs while the acceleration value was high.

In Figure 5.4, shows six dash curves which are critical moments where
the universal moment of platform (solid curves) must not touch the critical
curves in order to keep the system stable; otherwise the rover will tumble losing
its stability. The upper three dash curves indicate for critical moments required
to tumble about the rear legs, and the lower three dash curves indicate for

critical moments required to tumble the rover about the front legs.

The solid curves were firstly relatively far from the rear critical curves
when shoulders were open with 120° angle and conjunctional joints were
manipulated with 60°, but they were coming approach to the front critical
curves when shoulders joined with angle 90° and 0° conjunctional joints; solid
black curve was far the dash black curve during the travel time, this indicates
for the dynamic stable system and the four legs are in contact with ground.
While solid green curve was trying to touch the dash green curve during time

interval [160-200s]; this indicates for critical dynamical stability where the rear
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preserved small pressure on surface. Finally, the solid blue curve touched the
dash blue curve at time 123 second; this indicates for dynamic instability where

the rear legs lost the contacts with ground.

exerted Moment about zu-axis of universal frame

TUE) (Nm)

15;;;;;;L;;;;J:::”T’””T””’T ””” [ [ [
______ =====x! S m—— | | | | | |
| S——ex e~ —— | | | | |
O — 5-‘-~_5_ \~-‘*—ﬁ_____ | | |
10 - Rear critical moments | "S~ali-l L Tt e e e e ———
T S = | | ]
| | | | | iy I | | |
| | | | | " | i T |
| | | | | " | | | |
| | | | | ] | | | |
5----- - - - = - - - == 4- - B - H--- - - - = === - ———- - - - - 4
| | | | | i | | |
| | | | | i | | |
| | | | | i | | |
| | | | | i | | |
oOL----- [ T, a_ 1o Lo [ D e 4 1
| | |
| | |
L | |
I " |
| |
|
|

Front critical moments
|

J

|

1
| | |
(0] 20 40 60 80 100 120 140 160 180 200
Time (s)

-20

Figure 5.4. Universal moments and critical moments about zy axis.

In Figure 5.5, the universal moment about the yu-axis is fixed and zero
for three acceleration values as shown in solid curves, but the right and left
critical curves were coming approach when the shoulders were coming

approach to each other, and the RCJ and LLCJ were approaching to zero angle.
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exerted Moment about yu-axis of universal frame

20 ---- [ [ (i E e e e I
_____ A d I I I I I I I
| ] _7--“-L- | | | | | |
I I I It b I I I I I
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5 o— o o ! ! ! ! ! ! ! L O _
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s g8 0 jEE
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I I I I I I I I I
I I I I I I I I I |
T R B SO N SN O =
| | | | | | ze=="" | |
l l l l et l l l l
15 - - - — [ [ T i |
I I I La="" I I I I I
| R s | I I I I I I
i — T | | | | | | | |
_20 1 1 1 1 1 1 1 1 1 |
0 20 40 60 80 100 120 140 160 180 200
Time (s)

Figure 5.5. Universal moments and critical moments about yy axis.

Since the rover was manipulated in symmetric manner in this case, the
effects of torques exerted on RCJ, LCJ, RDJ, and LDJ are cancelled as a result
for being moving in the same magnitudes and in opposite rotations with
respect to universal frame. The only effects of joint torques are those exerted
on wheels which propagated in serial form from outermost link (wheels) to
innermost link (platform); link by link. See Table 5.2 and Figure 5.6.

Table 5.2. Torques exerted on wheel.

Accelerations Ti;}f riﬁﬁ ij‘f_ Tiig
in m/s’ (Nm) | (N.m) (N.m) (N.m)

2 0.0338 | 0.0338 | -0.0338 | -0.0338

4 0.0677 | 0.0677 | -0.0677 | -0.0677

5 0.0846 | 0.0846 | -0.0846 | -0.0846
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the platform, because the rover attitude is congruent with the flat surface. See

Figure 5.7.

Universal Moment of gravity force resulted from center of mass of links(N.m)

1 e T T e

40 60 80 100 120 140 160 180 200

20

40 60 80 100 120 140 160 180 200

20

40 60 80 100 120 140 160 180 200
Time (s)

20

Figure 5.7. Propagated moment of gravity forces about (xu,yu,zu) axes.
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However, the propagated moments of the inertial forces of wheels have

significant effects on platform as shown in Figure 5.8.

Universal Moment of inertial force resulted from center of mass of links(N.m)

1 " |
o] 20 40 60 80 100 120 140 160 180 200
Time (s)

Figure 5.8. Propagated moment of inertial forces about (xu,yu,zu) axes.

Finally, the normal forces exerted on wheels create moments about the

universal frames as shown in Figure 5.9

Universal moments resulted from normal forces (N.m)

160 180 200

Time (s)

Figure 5.9. Propagated moment of normal forces about (xu,yu,zu) axes.
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2. Wheels, RFD]J, and RRDJ motions on step flat-inclined surface.

This example studies the effect of rover configurations on step flat-
inclined surface as shown in Figure 5.10; the right wheels locomoted on flat
surface and left wheels locomoted on inclined surface with angle 22.5°. The
rover locomoted forward and subjected to three tests done in RFDJ and RRD]
as represented in black, green, and blue curves with wheel acceleration 2 m/ s2,

respectively, and as shown in Table 5.3:

4RK

Ground
Reference

L 7/

Figure 5.10. Rover posture on step flat-inclined surface.

Table 5.3. conf_0 — conf_0, conf_0 — conf_1, conf_0 — conf_2

elR e2R O3RF O3RR elL O2L e3LF e3LR
conf 0| 0 | 0 % % 00 % %
conf1| 0 | 0 % % 010 % %
conf2| 0 | 0 |- % % 0] 0 % - %




150

In this example, the first test is fix symmetric configuration as shown in
above table, but the configurations of four manipulators are manipulated in
non-symmetric manner in test 2 and test 3 as a result of rotation of right
shoulders (RDJ). The non-symmetric manner and the variance of elevations on
right and left sides significantly influence in platform attitude where the whole
rover undergoes under roll rotations as expressed in yy; axis as shown in Figure

5.11:

platform orientation angles w/2 universal frame —_— confo-->conf0
Ir---- T T T TTTTTT o rooo T ! conf -->conf;

—_— Confo-->conf2

Psi (deg)
o

Phi (deg)

Theta (deg)
o

Time (s)
Figure 5.11. Platform attitude.

The calculations take the three contact legs into account as being non-
symmetric configurations. Therefore, this example assumes right rear legs

without contact with surface.
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Normal force exerted on contact wheels

FnRF

FnLF

FnLR

Figure 5.12. Normal forces.

Above Figure shows the blue curve of right front leg becoming without
contact at times 118 second. It means that when the right shoulders were
closing to each other making the right front leg without contact with surface,
the rover rotated about single line delimited by the left legs. This process
threatens the dynamic rover stability as shown in Figure 5.13; the solid blue
curve touched the dash line at 118 second, thus the adopting of conf_ 2 (test 3)
will lead to dynamic unstable system. The solid green curve was trying to

approach from the lower dash green curve, thus it is about to reached to critical
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dynamic stable system. Finally the black curves are relatively far from each

other and this indicates for fully dynamically stable system.

exerted Moment about yu-axis of universal frame

TUR) (N.m)

|
|
12 T
0] 20 40 60 80 100 120 140 160 180 200
Time (s)

Figure 5.13. Universal moments and critical moments about yy axis.

The locomotion of wheels and the manipulation of RD]J yielded torques
propagated into universal platform frame as shown in Figure 5.14. As well as
the constant black curves indicate for constant wheels torques and symmetric
manner. However, the interior manipulations in shoulders disturbed the

symmetric form and add manipulation effects as shown in figure bellow.
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Universal towc (N.m)
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Figure 5.14. Propagated torques about (xy,yu,Zu) axes.

The gravity forces of link center of masses yielded moment effect on the

platform, because the rover attitude is rotating about y-axis as seen in Figure

5.15.

Universal Moment of gravity force exerted on center of mass of links(N.m)
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Figure 5.15. Propagated moment of gravity forces about (xu,yu,zu) axes.
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The moment of inertial force is resulted from the locomotive wheels and
manipulation of RDJ, Figure 5.16 shows that the black curves are constant
values because of symmetric manner and fixed manipulations, while the rest
curves are variable with respect to RD] manipulations.

Universal Moment of inertial force resulted from center of mass of links(N.m)
o T

xXu

Inertial Moment

yu

Inertial Moment

zZu

Inertial Moment

Time (s)

Figure 5.16. Propagated moment of inertial forces about (xu,yu,zu) axes.

Finally, the effect of normal forces is simulated in Figure 5.17 which
shows the black curves with constant values because of constant normal forces,
continuous connection with surface during the travel, and fixed manipulation.
However, the blue curves suddenly and significantly changed at time 118s as a
result of discontinuity occurred between the right front leg and surface; In fact

as explained previously, this time the rover lost its dynamic stability.
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Universal moments resulted from normal forces (N.m)
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Figure 5.17. Propagated moment of normal forces about (xu,yu,zu) axes.
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3. Wheels, RDJ, and LDJ] Motions on Inclined Surface.

This example studies the effect of rover elevation on inclined surface
with angle 20.7° as shown in Figure 5.18; the rover locomoted forward and
subjected to three tests done in RDJ and LDJ as represented in black, green,

and blue curves with wheel acceleration 2.5 m/s* as shown in Table 5.4

Figure 5.18. Rover’s shoulders closing on inclined surface.

Table 5.4. conf_0 — conf_0, conf_0 — conf_1, conf_0 — conf_2

e1R e2R e3RF e3RR 61L e2L e3LF e3LR
conf 0| 0 | O % % 01l 0 % %
conf1| 0 | 0 g % 00 % %
conf2| 0 | 0 |- % % 0] 0 % - %
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For being symmetric configurations in three tests, the platform attitude
was congruent to the inclination of surface irrespective to the shoulders

opening or joining, as shown in Figure 5.19
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Figure 5.19. Platform attitude.

Figure 5.20 shows that the front legs share the same normal forces and
higher values in comparison to the rear legs, as a result of wheel accelerations
and shoulders joining. On other words, high acceleration and lower shoulder
angles yield pressure on the single line delimited by contact points of front legs.
The following picture shows constant normal forces regarding to constant
manipulations (black curve), and shows variable normal forces with respect to

acceleration (green and blue curves). However, the front normal forces
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represented in blue curve shows constant normal forces after disconnection

occurred between the rear legs and surface at time 137,

Normal force exerted on contact wheels
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Figure 5.20. Normal forces.

Above Figure shows the blue curves denoting for rear legs were
becoming without contact at times 137 second. It means that when the
shoulders on both sides were closing to each other, the rover elevation with
respect to inclined surface got higher and the pressure exerted on front legs got
increase with taking into consideration the significant wheeled accelerations,

and then the rover rotated about single line delimited by the front legs making
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the rear legs without contact with surface. This process threatens the dynamic
rover stability as shown in Figure 5.21; the solid blue curve touched the dash
line at 137 second, thus the adopting of third test will lead to dynamic unstable
system. The solid green curve is trying nearly approaching from the dash green
curve, thus it reached to critical dynamic stable system. Finally the black curves

are relatively far from each other and this indicates for fully dynamically stable

system.
exerted Moment about zu-axis of universal frame
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Figure 5.21. Universal moments and critical moments about zy axis.

The effects of propagated moments resulted from gravity forces, inertial
forces exerted on the center of mass of links, normal forces exerted on wheels

are simulated in Figure 2.22, 2.23, and 2.24 respectively.
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Universal Moment of gravity force exerted on center of mass of links(N.m)
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Figure 5.22. Propagated moment of gravity forces about (xu,yu,zu) axes.

Universal Moment of inertial force exerted on center of mass of links(N.m)
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Figure 5.23. Propagated moment of inertial forces about (xu,yu,zu) axes.

Figure 5.24 shows significant and sudden change occurred in blue curve

about zy axis, as a result of losing the connection between rear legs and surface;

and this simply simulates the unstable situation.
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Universal normal forces moments exerted on normal forces (N.m)
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Figure 5.24. Propagated moment of normal forces about (xu,yu,zu) axes.
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4. Wheels motion on flat and inclined surface.

This example can be briefed in three periods; firstly, a flat period when
the rover moved over flat surface and the platform attitude were congruent
with surface. Secondly, a transition period when the rover suddenly faced an
inclined surface with inclined angle 30° at time 100 second, the front wheels
started to move on inclined surface while rear legs were still on flat surface and
the platform attitude was under rotation. Finally, an inclined period when the
rear legs traversed the flat surface and the platform attitude became congruent

with inclined surface.

The configurations are in fixed symmetric forms with different open
shoulders 90°, 45°, 20°, respectively, as shown in Table 5.5.

Table 5.5. conf 0 — conf 0, conf 1 — conf 1, conf 2 — conf 2

elR e2R O3RF O3RR 9lL O2L e3LF e3LR
conf 0| 0 | 0 % % 00 % %
conf1| 0 | 0 % % 010 % %
conf2| 0 | 0 |- % % 0] 0 % - %

The time delay between the front wheel and rear leg can be computed as

fellow
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t =

—a, SN0 +a, Sind,
delay R

wx0.5

¢ _ |aysinb,, —a;sinb; o
delay L — WXO 5

Where, W is wheel acceleration value, in this example vv = 0.5 m/s® is chosen
small in order to make the transition period longer and to study the comparisons clearly
and precisely. The three tests have 1.5042, 1.2649, and 0.7454 second as time delays
between front and rear legs. During the transition period, the rover undergoes to pitch
rotation. The time of rotation is a function of shoulder angle and wheel acceleration. In
Figure 5.25, the black curve stands for first test and it takes longer rotation time; and blue
curve accomplishes its rotation faster. Then after the rear legs traversed the flat surface,
the steady pitch attitude takes place and the whole rover becomes congruent with the
surface inclination.
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Figure 5.25. Platform attitude.
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As being symmetric form and moving on flat surface, the normal forces
for front legs were equally greater than the rear legs as a result of inertial
effects. However at the time of contacts with incline sutrface, the normal forces
of front legs were gradually decreasing during the transition period as shown in
Figure 5.26. The front legs represented in blue curve shows it becoming zero
during the transition period exactly, whereas the rear legs became fully

responsible for the rover heaviness see Figure 5.27.

Normal force exerted on contact wheels
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Figure 5.26. Normal forces.
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Figure 5.27. Rear legs lost the contact with ground.

Figure 5.28 shows the simulation of dynamic stability for three tests; in
first test represented in solid black curve which is far from the critical curves;
while green curves were somehow close trying to reach the critical situation;
and finally the dynamic instability occurred in third test represented in solid
blue curve touching the rear critical curves represented in dash blue curve
during the time of transition period; where it shows the universal moment at
platform equal the rear critical moment. Thus, the open shoulders with 20° is
not capable for moving from flat to inclined surface with an angle 30°. The
zooming for transition period keeps a small distance that separates the
universal moments and the critical moments for all boarders, else rear critical

moments regarding to third test.
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Figure 5.28. Universal moments and critical moments about zy axis.



167

5. Wheels motion on sinusoidal surface.

This example studies the effect of wheel acceleration locomoted on
sinusoidal surface subjected to three tests done in wheels accelerations 1, 2, and
3 m/s” as represented in black, green, and blue curves, respectively. In addition,
the rover configurations of four manipulators were manipulated in fixed

symmetric manner as shown in Table 5.6:

Table 5.6. conf 0 — conf 0

elR e2R O3RF O3RR 9lL OZL e3LF e3LR

U i | X
conf 0| O 0 |- 7 6 0 0 6 6

There is fixed 60° angle between open shoulders on both sides, thus the
delay time between the front and rear legs are 0.8944, 0.6325, and 0.5164
second. The rear legs share the elevations of front legs after the elapse of those
delay times. The pitch orientations for three speeds were simulated in Figure
5.29; it shows rover was ascending the sinusoidal surface with negative angle
and descending with positive angle with same amplitude for three speeds and
different time delay between those speeds. Zero amplitude of pitch angle

denotes the top of concave and bottom of convex.
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platform pitch angle w/2 universal frame
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Figure 5.29. Pitch angle.

The normal forces for front legs were equal and greater than equal rear
legs in ascending and descending locomotion as a result of high acceleration
effect of wheels as shown in Figure 5.30. The amounts of wheel acceleration
are chosen large enough to overcome the gravity force which decelerates the
rover at ascending motion, and in order to study their effects on dynamic
stability. The normal forces of rear legs with highest speed (3 m/s’) represented
in blue curve were zero during the travel else in the bottom of convex when
the rover moves half ascending travel where the pitch angle -11.3°% while

regarding to second test (2 m/s”) represented in green, the normal forces of
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rear legs became zero for shorter time in comparison with blue and green

curves as a result of less acceleration.

Normal force exerted on contact wheels

FnRF, FnLF

FNRR, FnLR

Figure 5.30. Normal forces.

Figure 5.31 shows that the universal moment far from the critical
moments in the case of black curves (1 m/s?, so that this test is considered
dynamically stable throughout the travel. In the case of 2 m/ s? the solid green
curve was touch the lower dash curve some part of travel time, thus the
second test is considered dynamic instable. However, in the case 3 m/s” the

universal moment represented in solid blue curve touched the dash blue curve
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most of the time and this concludes the dynamic unstable system, else the

periodic time interval shown in Figure 5.32.

exerted Moment about zu-axis of universal frame

wN) ©nL

Time (s)

Figure 5.31. Universal moments and critical moments about zy axis

exerted Moment about zu-axis of universal frame

20
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Figure 5.32. Zooming for universal moments and critical moments about zy axis
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The torques exerted on wheels are simulated for three tests as shown in

Figure 5.33, those values are in direct proportional to wheel acceleration.

Universal towc (N.m)

Time (s)

Figure 5.33. Propagated torques about (xy,yu,Zuy) axes.

The effect of moment of inertial forces are simulated in constant cutves
as a result of constant configurations, and it in direct proportional to wheel

acceleration as shown in Figure 5.34

Universal Moment of inertial force exerted on center of mass of links(N.m)
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Figure 5.34. Propagated moment of inertial forces about (xu,yu,zu) axes.
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The effect of moment of gravity forces are simulated in sinusoidal

curves as a result of sinusoidal attitude, and it not in direct proportional to

wheel acceleration, but platform attitude angles as shown in Figure 5.35
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Figure 5.35. Propagated torques about (xy,yu,Zu) axes.

The effect of moment resulted from normal forces is simulated in Figure

5.306, and it is appeared in sinusoidal curves. The third test yielded the highest

moment about zy axis as a result of highest acceleration. The top of concave is

non-uniform due to the normal force constraint.
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Universal normal forces moments exerted on normal forces (N.m)
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Figure 5.36. Propagated moment of normal forces about (xu,yu,zu) axes.
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6. Wheels, RDJ, LDJ motions on random surface.

This example studies the effect of wheel acceleration locomoted on
random surface subjected to two tests done in wheels accelerations 0.05 and 1
m/s” as represented in black and blue curves, respectively. In addition, the
rover configurations of four manipulators are manipulated in symmetric

manner as shown in Table 5.7:

Table 5.7. conf 0 — conf 1

e1R ezR O3RF O3RR elL O2L e3LF e3LR

T T T T

COI‘lf_O 0 0 —Z Z 0 0 Z —Z
T T T |

conf1| O 0 |- 7 6 0 0 6 5

This example considered symmetric configurations where the right and
left shoulders were joined closely from 90° till 60°. Figure 5.37 simulated the
platform orientation with respect to universal frame; it reflects the geometry of
random elevations surface; the rover moved on flat surface, and ascended and
descended non-uniform surface; the rear legs moved on the front elevations
after delay time 1 second; In addition, it shows the platform subjected to three

kinds of rotations:
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1) Zero attitude, where the platform frame is contingent with universal
frame during the interval [0-16s] and [111-134s] and [179-200s].

2) Clockwise rotations during the interval [17-110s], maximum angle -
55.2° at time 100s.

3) Counter-clockwise rotations during the interval [135-200s], maximum

positive angle reached to 48.26° at time 178s.
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Figure 5.37. Platform pitch angle.

Figure 5.38 simulated the normal forces exerted on four legs for two
tests represented in black and blue curve. The front legs represented in black
curves were without contact during the interval [86-100s] and rear legs were
without contacts during the time interval [169-178s]. While the front legs
represented in blue curve were in contact with surface during travel times but

the rear legs were without contacts during the time interval [164-178s].
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Normal force exerted on contact wheels
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Figure 5.38. Normal forces

Figure 5.39 simulated the universal moments exerted on platform
represented in solid curves, and front and rear critical moments represented on
dash curves. It shows the solid black curve (0.05 m/s% touched the rear critical
moment during time interval [86-100s] In other words, the front legs were
without contact with surface and the whole rover rotated about the rear legs,
thus the rover was dynamically unstable system during this interval. It also
shows the solid black curve touched the front critical moment during the time

interval [169-178s], and analytically it means that the rover rotated about the
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front legs making the it dynamically unstable system. Moreover, it shows the
solid blue curve (1 m/s% touched the front critical moment during time interval

[164-178s], therefore, the rover is dynamically unstable during this interval.

exerted Moment about zu-axis of universal frame
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Figure 5.39. Universal moments and critical moments about zy axis

These imply the advantages and disadvantages of inertial accelerations of
wheels and the rover configurations. The higher acceleration (1 m/s2)
positively sustained the stability during interval [86-100s], but it negatively
speeded the process of instability during interval [164-178s], whereas less

acceleration (0.05 m/s?) delayed the instability for 5 second.
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According to rover configurations, it was used the same configurations
for the two acceleration tests, and it shows that open shoulders with 90° as
shown in time Os is much safer and secure for keeping a significant distance
between the universal moments and critical moments curves of both sides,
while open shoulders with 60° endangered the system for keeping small
distance between the universal moments and critical moments of both sides.
Therefore, imposing control on configurations and accelerations evades the

danger of tumbling.



179

Chapter Six

6. Conclusion

This thesis exhibits a new mechanical design for a quadruped mobile
robot. The four identical wheeled legs were gaining high level coordinations in
various aspects. This feature contributed in increasing the rover speed stably
and smoothly on uneven terrain. Besides, this work inherited the advantages
and eliminated the drawbacks of both legged and wheeled locomotion in
computational manner, for being equipped with wheels and legs
simultaneously. Thus, the platform a base link undergoes under a smooth and
soft locomotion in relative to four wheeled-legged manipulators and surface

geometries.

The platform attitudes were evaluated with respect to platform universal
frame. The changes occurred on joint configurations and different ground
elevations disturb the symmetric posture, and rotate the platform smoothly

leaving the universal axis by roll, pitch, and yaw angle.
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Newton-Euler Recursive method was employed, and it provided an on-
line monitoring system for the sources of dynamic forces and moments exerted
on each link of the four manipulators. The decomposition of universal forces
and moments made the point clearer throughout studying the source of each
force and moment exerted on the universal frame. The universal moment,
which acts about platform link of the rover, is resulted from the normal forces
acted at wheels, gravity forces, inertial forces and torques exerted on the center
of mass of each link. When rover faced random surface during motion, a
change has been occurred in dynamic disturbances at the wheels generating

considerable moments about the platform link expressed in universal frame.

Because four legs are considered indeterminate system, in this thesis the
normal forces were evaluated for three contact legs in the case the non-
symmetric rover. However, in the case of symmetric configurations the normal
forces are distributed equally between the sides which sharing the same the
inertial forces, ground geometries, and platform attitude. Thus regarding to
symmetric four legs, normal forces were evaluated by considering two legs
sharing the same value. The results simulated the effect of high acceleration on

the connectivity between wheels and surface.
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A new dynamic stability criterion was presented for rover operating
arbitrary on various shapes of surfaces, and variable rover configurations. In
addition, this criterion provided on-line calculations for the effect of rover
configurations, various surface geometry, platform attitudes, kinematic values,

dynamic effects, and variable ground normal forces.

The gravity force is static feature, and it is not influenced with
acceleration at all, but its moment significantly effects on the dynamic stability
in the presence of changing in platform attitude. While inertial force is dynamic
feature, and it is not influenced with ground geometry and platform attitude,

and it significantly effects on the dynamic stability.

The simulation model was presented for a various examples exploiting
MatLab which provided on-line calculations for predicting the behavior of a

physical system under a variety of surface geometries and rover configurations.

In future work, inverse kinematics can be exploited for determining the
generalized coordinates (angles of joints), and then evaluating the required

rover configurations to enable the uncontact leg to select its foothold on
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surface. Furthermore, the platform attitudes can be evaluated as function of
rover configurations, surface geometries, and dynamic forces and moments. In

addition, normal forces exerted on four legs should be evaluated in the case of

non-symmetric manner in future work.



183

References

. Wettergreen, D., Thorpe, C., Whittaker, R., “Exploring Mount Erebus by
walking robot”, Robotics and Autonomous Systems, vol. 11, pp. 171-85,
December 1993.

. Peterson, K. and Ward, C., “An Autonomous Mobile robot to Perform
Waste Drum Inspections”, Robotics and manufacturing — Recent Trends
in Research, Education, and Applications, ASME Press, vol 5, pp. 637-
641, 1994.

. Gonzalez de Santos, P., Garcia, E., Estremera, J. and Armada, M. A.,
“SILO6: Design and configuration of a legged robot for humanitarian
demining”, IARP Workshop on Robots for Humanitarian Demining,
Vienna, Austria, 3-5 November 2002.

. Papadopoulos, E. and Sarkar, S., “On the Dynamic Modeling of an
Articulated Electrohydraulic Forestry Machine”, Proc. of the 1996 AIAA
Forum on Advanced Developments in Space Robotics, Madison, WI,
August 1-2, 1996.

. lagnemma, K., Shibly, H., and Dubowsky, S., “On-line Terrain
Parameter Estimation for Rovers”, IEEE International Conference on
Robotics and Automation, Washington D.C, USA, 2002.

. James, J. Z., David, B. M., Jeffrey M. W., June F. Z., Fred B. O., Kelly J.
M., Gerald, M. H., Phillip A., Dennis J. E., and Thomas, W. G.,
“Exploration Rover Concepts and Development Challenges”, NASA
TM-2005-213555, AIAA-2005-2525, Orlando, Florida, March 2005.

. Calafiore, G., Indri, M., Bona, B., “Robot Dynamic Calibration: Optimal
Excitation Trajectories and Experimental Parameter Estimation”,
Journal of Robotic Systems, Torino, Italy, vol. 18, no. 2, pp. 55-68, 2001.



184

8. Sujan, A. V., and Dubowsky, S., “An Optimal Information Method for
Mobile Manipulator Dynamic Parameter Identification”, IEEE/ASME
Transactions in Mechatronics, vol. 2, no. 2, June 2003.

9. Fukuoka, Y., Kimura, H., and Cohen, A., “Adaptive Dynamic Walking of
a Quadruped Robot on Irregular Terrain Based on Biological Concepts”,

The International Journal of Robotics Research, vol. 22, no. 3-4, pp. 187-
202, March 2003.

10.Goswami, A., “Postural stability of biped robots and the foot rotation
indicator (FRI) point”, International Journal of Robotics Research, vol.
18, no. 2, pp. 523-533, 1999.

11.Papadopoulos, E., Sarkar, S., “The Dynamic of an Articulated Forestry
Machine and its Applications”, Proceedings of the IEEE International
Conference on Robotics and Automotion, pp. 323-328, Albuquerque,
NM, April 1997.

12.Matijevic J., “Mars Pathfinder Microrover - Implementing a Low Cost
Planetary Mission Experiment”, Proceeding of the Second IAA
International Conference on Low-Cost Planetary Missions, John Hopkins
Applied Physics Laboratory, Maryland, USA, pp IAA-L-0510, April
1996.

13.Carr, M., “Workshop on Mobility”, Report. Ames Research Center, July
2, 1995.

14.Hayati, S., Volpe, R., Backes, P., Balaram, J., and Welch, W.,
“Microrover Research for Exploration of Mars”, AIAA Forum on
Advanced Developments in Space Robotics, 1996.

15.Mars Pathfinder: http://mars.jpl.nasa.gov.

16.Jeffrey S. Norris, Mark W. Powell, Marsette A. Vona, Paul G. Backes,
Justin V. Wick., “Mars Exploration Rover Operations with the Science
Activity Planner”, Proceedings of the 2005 IEEE, International



185

Conference on Robotics and Automation, pp.4629-4634, Barcelona,
Spain, April 2005.

17.Mishkin, A., Morrison, J., Nguyen, T., Stone, H., Cooper, B., and
Wilcox, B., “Experiences with operations and autonomy of the Mars
Pathfinder Microrover”, IEEE Aerospace Conference, pp.337-51, 1998.

18.Stroupe, Ashley W., Singh, S., Simmons, R., Smith, T., Tompkins, P.,
Verma, V., Vitti-Lyons, R., Wagner, M., “TECHNOLOGY FOR
AUTONOMOUS SPACE SYSTEMS”, The Robotics Institute Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, CMU-RI-TR-00-02,
September 2002. See page 76.

19.http://www.windows.ucar.edu/tour/link=/space missions/mars/mars_expl
oration_rover/mer_vehicles.html, May, 2004.

20.Jagnemma, K., Shibly, H., Rzepniewski, A., and Dubowsky, S.,
“Planning and Control Algorithms for Enhanced Rough-Terrain Rover
Mobility”, Proceedings of the Sixth International Symposium on
Artificial Intelligence, Robotics and Automation in Space, i-SAIRAS,
2001.

21.Jagnemma, K., Rzepniewski, A., Dubowsky, S., Huntsberger, T.,
Schenker, P., “Mobile Robot Kinematic Reconfigurability for Rough-
Terrain”, Proceedings of the SPIE Symposium on Sensor Fusion and
Decentralized Control in Robotic Systems III, Boston, September 2000.

22.Farritor, S., Zhang, J., “A Modular Robotic Infrastructure to Support
Planetary Surface Operations”, The American Institute Of Aeronautics
and Astronautics, Department of Mechanical Engineering, University of
Nebraska, Lincoln, USA, January 9, 2000.

23.Yoneda, K. and Hirose, S. “Three-dimensional stability criterion of
integrated locomotion and manipulation”. Journal of Robotics and
Mechatronics, vol. 9, no. 4, pp. 267-274, 1997.



186

24.Lamon, P. and Siegwart, R., “Wheel Torque Control in Rough Terrain -
Modeling and Simulation”, In Proceedings of the IEEE International
Conference on Robotics and Automation, Barcelona, 2005.

25.Meghdari, A., Mahboobi, S. H., and Gaskarimahalle, A. L., “Dynamic
Modeling of ‘CEDRA’ Rescue Robot on Uneven Terrains”, Proceedings
of IMECE2004-59239, ASME International Mechanical Engineering
Congress, Anaheim, California, 13-19 November 2004.

26.Hardarson, F., “Stability analysis and synthesis of statically balanced
walking for quadruped robots”. PhD thesis, The Royal Inst. of
Technology, 100 44 Stockholm, Sweden, June 2002.

27.Michel, O., “Webots™: Professional Mobile Robot Simulation”,
International Journal of Advanced Robotic Systems, vol. 1, no. 1, pp. 39-
42, ISSN 1729-8806, 2004.

28.Lee, Y., Hirose, S., “Three-Legged Walking for Fault Tolerant
Locomotion of a Quadruped Robot with Demining Mission”, Proceedings
of the IEEE/RSJ, International Conference on Intelligent Robots and
Systems, pp. 973-978, 2000.

29.Hayati, S., Volpe, R., Backes, P., Balaram, J., Welch, R., Ivlev, R.,
Tharp, G., Peters, S., Ohm, T., Petras, R., Laubach, S., “The Rocky 7
Rover: A Mars Sciencecraft Prototype”, IEEE International Conference
on Robotics and Automation, pp. 2458-2464, 1997.

30.Garcia, E., Estremera, J., and Gonzalez-de-Santos, P., “A Classification
of Stability Margins for Walking Robots”, Industrial Automation
Institute, Madrid, Spain, 2002.

31.Garcia, E., Estremera, J. and Gonzalez de Santos, P., “A comparative
study on stability margins for walking machines”. Robotica, vol. 20, pp.
595-606, 2002.



187

32.McGhee, R. B. and Frank, A. A., “On the stability of quadruped creeping
gaits”, Mathematical Biosciences, University of southern California, Los
Angeles, California, vol. 3, pp. 331-351, October, 1968.

33. Messuri, D. and Klein, c., “Automatic body Regulation for Maintaining
Stability of a Legged Vehicle During Rough-Terrain Locomotion”, IEEE
Journal of Robotics and Automation, vol. RA1, no. 3, pp.132-141,
September, 1985.

34.Nagy, P. V., Desa, S., Whittaker, W. L., “Energy-Based Stability
Measures for Reliable Locomotion of Statically Stable Walkers: Theory
and Application”, The International Journal of Robotics Research, vol.
13, no.3, pp. 272-287, June 1994.

35.Hirose, S. Tsukagoshi, H. and Yoneda, K., “Normalized energy stability
margin: generalized stability criterion for walking vehicles™,
Proceedings of Int. Conf. On Climbing and Walking Robots, Brussels,
pp. 71-76, November, 1998.

36.Hirose, S. Tsukagoshi, H. and Yoneda, K., ““Normalized Energy Stability
Margin and its Contour of Walking Vehicle on Rough Terrain™,

Proceedings of the IEEE, International Conference on Robotics and
Automation (ICRA), Seoul, Korea, pp. 181-186 May 2001.

37.Gonzalez, P., Santos, de., Jimenez, M., A. and Armada, M.A., "Dynamic
Effects in Statically Stable Walking Machines", Journal of Intelligent and
Robotic Systems, vol. 23, no 1, pp. 71- 85, 1998.

38.0rin, D. E., McGhee, R. B., and Jaswa, V. C., "Interactive Computer-
Control of a Six-Legged Robot Vehicle with Optimization of Stability,
Terrain Adaptability, and Energy,” Proc. of 1976 IEEE Conference on
Decision and Control, Clearwater Beach, Florida, pp. 382-391,
December, 1976.

39.Vukobratovic, M., Frank, A.A. and Juricic, D. “On the stability of byped
locomotion”, IEEE Transactions on Biomedical Engineering, vol. 17, no.
1, pp. 25-36. 1970.



188

40.Kang. D.O., Lee, Y.J., Lee, S.H, Hong, Y.S. and Bien, Z. “A study on an
adaptive gait for a quadruped walking robot under external forces”.

Proceedings of the IEEE International Conference on Robotics and
Automation, Albuquerque, New Mexico, pp. 2777-2782, 1997.

41.Lin, B. S. and Song, S. M. “Dynamic modeling, stability and energy
efficiency of a quadrupedal walking machine, IEEE Conference on
Robotics and Automation, pp. 367- 373, Atlanta, Georgia, 1993.

42 .Yoneda, K. and Hirose, S., “Tumble Stability Criterion of Integrated
Locomotion and Manipulation”, Proceedings IROS 96, pp. 870-876,
1996.

43.Zhou, D., Low, K.H. and Zieclinska, T. ““A stability analysis of walking
robots based on leg-end supporting moments”. Proceedings of IEEE

International Conference on Robotics and Automation. San Francisco,
CA. pp. 2834-2839, April 2000.

44 Papadopoulos, E.G., Rey, D.A., "A New Measure of Tipover Stability
Margin for Mobile Manipulators", In Proceedings of the IEEE Internal
Conference on Robotics and Automation. Conf. on Robotics and
Automation, pp. 3111-3116, 1996.

45.Papadopoulos, E. and Rey, D., “The Force-Angle Measure of Tipover
Stability Margin for Mobile Manipulators,” Vehicle System Dynamics,
vol. 33, no 1, pp. 29-48, 2000.

46.Garcia, E. and Gonzalez de Santos, P. “An improved energy stability
margin for walking machines subject to dynamic effects”, Robotica, vol
00, pp. 1-8, April, 2004.

47.Garcia, E. and Gonzalez de Santos, P. “A New Dynamic Energy Stability
Margin for Walking Machines”, International Conference on Advanced
Robotics ICAR’03, Coimbra, Portugal, 30 June-3 July, 2003.



189

48.Ghasempoor A. and Sepehri N., “A Measure of Machine Stability for
Moving Base Manipulators”, IEEE International Conference on Robotics
and Automation, Nagoya, Japan, pp. 2249-2254, 1995.

49.Luh, J. Y. S., Walker, M. W., Paul, R. P. C., “On-line computational
scheme for mechanical manipulators”, ASME Journal of Dynamic
Systems, Measurement, and control, vol. 102, pp. 69-76, June 1980.

50.Paul, R., "Modeling, trajectory calculation and servoing of a computer
controlled arm,” AIM-177, Stanford University, Artificial Intelligence
Laboratory, 1972.

51.Luh, J., Walker, M., and Paul, R., ““Resolved-Acceleration Control of
Mechanical Manipulators,” IEEE Trans. Automation. Control, AC-25,
no. 3, pp.468—474. 1980.

52.Hemami, H., Jaswa, V. C., and McGhee, R. B., “Some Alternative
Formulations of Manipulator Dynamics for Computer Simulation
Studies,” Proc of 13th Allerton Conference on Circuit and System
Theory, University of Illinois, October, 1975.

53.Beer, P., Johnston, R., “Vector Mechanics for Engineers: Statics and
Dynamics”, McGraw-Hill Companies, Sixth Editions, pp. 155, 1996.

54.Uicker “On the dynamic analysis of spatial linkages using 4x4 matrices”,
Ph.D Dissertation, Northwestern University, 1965.

55.Stepanenko, Y., and Vukobratovic, M., “Dynamics of Articulated Open
Chain Active Mechanisms”, Mathematical Biosciences, vol.28, pp.137-
170, 1976.

56.Armstrong. W., ““Recursive solution to the equations of motions of an n-
link manipulator”, in Proc. 5th World Congress on Theory of Machines
and Mechanisms, Montreal, pp. 1343-1346, July 1979.

57.Kahn, M.E., “The Near Minimum Time Control of Open Loop
Articulated Kinematic Chains”, Stanford Al Lab, AI Memo 106, 1969.



190

58.Hollerbach, J., “A recursive Lagrangian formulation of manipulator
dynamics and a comparative study of dynamics formulation complexity,”
IEEE Trans. Syst. Man Cybern., vol. SMC-10, pp. 730-736, Nov. 1980.

59.Silver, W.M., “On the equivalence of Lagrangian and Newton-Euler
dynamics for manipulators,”, Int. J. Robotics Research. vol. 1, no. 2, pp.
118-128, 1982.

60.Ploen, S.R., “Geometric Algorithms for the Dynamics and Control of
Multibody Systems™, PhD Dissertation, University of California IRVINE.
pp. 34-36, 1997.

61.Walker, M. W., and Orin, D. E., “Efficient dynamic computer simulation
of robotic mechanisms”, ASME Journal of Dynamic Systems,
Measurement and Control, vol. 104, pp. 205-211, 1982.

62.Corke, P.I., “A Robotics Toolbox for MATLAB”, IEEE Robotics and
Automation Magazine, 3(1):24-32, March 1996.

63.http://en.wikibooks.org/wiki/Trigonometry:Solving Trigonometric Equa
tions, May, 2005.

64.Denavit, J. and Hartenberg, R. S., “A kinematic notation for lower-pair
mechanisms based on matrices”, ASME Journal of Applied Mechanics,
vol 77, pp. 215-221, June 1955.

65.Shibly, H., “Performance Evaluation and Efficient Control of Trajectory
Following Robots with Friction and Backslash”, Ph.D. Thesis, Carnegie-
Mellon University, Pittsburgh, USA, 1988.

66.Richard P. Paul., “Robot manipulators: Mathematics, programming, and
control”, the MIT Press, Cambridge, Massachusetts and London,
England, the Massachusetts Institute of Technology, 1981.

67.Alonzo Kelly., “Essential Kinematics for Autonomous Vehicles”,
Carnegie Mellon University, The Robotics institute, CMU-RI-TR-94-14,
May 1994. available at



191

http://www.frc.ri.cmu.edu/~alonzo/pubs/reports/pdf_files/kinematics.pdf




192

Appendices

Appendix A: Denavit-Hartenburg Convention

In 1955, Denavit and Hartenburg [64,62] constructed a novel technique
for setting up orthonormal coordinate frames to a pair of adjacent links in an
open kinematics chain. DH describes the kinematics of the robot by describing
the position and orientation of each link with respect to the previous link. In a
simple manner, each pair of successive joints is characterized by a distance
between joint axes a, a twist between joint axes o, an offset d, and a joint angle
0.

Each joint axis [65] should be firstly labeled in each manipulator with a
coordinate frame number. Starting from Oy as the base frame to O, as the end-
effector. The next step is to set up the three dimensional coordinate system.
The z; axis represents the motion of link i+1, so that it is assigned along the
axis of rotation for revolute joint or in the direction of translation for prismatic
joint. For parallel joint axis, zixz;.;=0, the X;.; axis is directed from frame O; to

Oi.1, and for intersecting joint axes, the X;.; is directed to be perpendicular to
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the plane or parallel to the vector cross product z;.1Xz;. The y-axis is defined in

the direction needed to complete a right-handed orthonormal coordinate

frame. The system (Xo, Yo, Zo) is assigned at link 0, the platform. For the end-

effector, instead of attaching coordinate system (X4, Y4, Z4) to link 4, the system

(n, o0, a) is defined with X4 replaced by the unit normal vector n, y4 by the unit

orientation vector 0, and z4 by the unit approach vector a. the system (n, 0, a)

specifies the orientation of the wheel. The DH parameters, 0., d;, a;, and a,,

are defined for each joint pair according to the criteria as given bellow.

Table A.1. DH explanation.

DH parameters | Notations Description

) rotating angle between the Xj.; and X; axes about
Joint angle 0. .

Zi-1 ax1s.
Link offset d; translating distance from X;.; and X; along zj.i.
Link length a; translating distance from z;_; and z; along the X;.
. rotating angle between z.; and Zz; axis about X;

Twisted angle o & g -l ' '

axis.
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Figure A.1. Two adjacent links [65].

So the homogeneous transformation matrix A~ that represents the
position and orientation of the coordinate system 1 relative to 1-1 is:

A =Rot(z, 0,) . Tran(0, 0, d;) . Tran(a;, 0, 0) . Rot(x;, o )

cosg, —sing; 0 Of1 O O a; |l 0 0 0
A= sing; cosg; O OO0 1 O OO0 coso, —sina; O
S 0 1 0[/0 0 1 d|0 sina, cosa, O
0 0 0O 1/0 0 0 110 0 0 1
cosO, —sinO;cosa; sinO;sina;  a;-cosb,
sinf, cosO;cosa; —cos0;sina; a;-sinb;
- ' (A.1)
0 sina; COs0; d;

1

0 0 0 1



195

In a robot manipulator, there are two types of joints; revolute and
prismatic. For revolute joint, 0, vaties by allowing for rotation between two
links about an axis and is called the joint angle where the link offset d; is
constant; and for a prismatic joint, the link offset d; varies by allowing for
translation (sliding) motion along an axis and is called the joint displacement
where the joint angle 0. is constant and the link length also a; = 0. The
generalized coordinates, (i, represent the formulations of these two types as
follows:

0. for a revolute joint
q, = (A.2)

d.  for a prismatic joint

Rotation Translation

Figure A.2. Types of joints
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Appendix B: Inverse kinematics

Until now, we know the target in which the manipulator reached by
solving the forward kinematic equations for the Rover, and we have completed
the system transform graph and also defined the homogeneous transformation
between frames of the platform universal, ground universal, and contact point.
However, we are now concerned to know the joints angles in order to make the

required joints’ moves 0,, 0,, 0, and 0, in term of the given numerical values

of the orientation and position.

Equating the generalized matrix B] to the forward kinematics A}, we

obtain matrix equation:

Bi=Al
N, Ox ax px - C1C2C34+ 51834 C1C2834+ S]C34 C1S2 - C1C2 (a4C34+ 83C3) + Sl (3.4834+ agsg) (B 1)
l’ly 0y ay py _ — 81C2C34— C]S34 81CZS34— C1C34 3182 - 81C2 (a4C34+ azCz) - C1 (34834+ 3383)
n, o, a, p. S:Cs4 —S:S54 G, S (asCsa+ a3C3) +d,
00 0 1 0 0 0 1

Where, the matrix equality implies 12 element-by-element equality
forming 12 non-trivial equations

nx= —C1C2C34 + 81834 (BZ)
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ny= —81C2C34—C1834 (B3)
n,= SQC34 <B4)
0x= C1CaS54+S,Cxy (B.5)
Oy= S1CQS34—C1C34 (B.G)
0,= —SzS34 (B7)
Ax— C]Sz (BS)
ay= 8182 <B9)
a,= C, (B.10)
px= —C1Cx(a4C341a3C3)+S1(a4S341a3S3) B.11)
by= —S1C2(a4C34+a3C3)—C1(a4S34+a3S3) (B.12)
p= S2(a4CsstazCs)+d; (B.13)

The solutions for 0, 0,, 0, and 0, through using the arc cosine or sine
function are inaccurate, since the sign of angle will not be taken into
consideration and the division by sinf, will make it undefined whenever 0, is
close to 0 or £180 [66]. Therefore, the arc tangent function will mostly be
taken into our computation providing two arguments, {X, y}, within the
interval of -t < 0, < min order to check the sign of y and X and examine when

either X or y is zero. X represent the adjacent side, and y represent the opposite

side. This procedure will provide the correct and accurate results.

However, one of the most difficult forms of trigonometric equations is

presented here that solved by squaring and adding [67]. Moreover, the arc
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cosine function will, in this case, be taken into computation providing two

arguments, {X, y}, within the interval of —-w <0, <n

A
y
Xy TS Xy
-+ L+ +
Xy XYy
[ _l’__
v

Figure B.1. The atan2(y, x) function
The angle variables are evaluated in a sequential manner; each variable is
isolated by pre-multiplying the matrix equation successively by the inverse

. -1 .
transforms starting at base frame (A?) and working forward

B) =A] (B.14)
(A') Bl =A] (B.15)
(AL) (A7) By =4 (B.16)
(A2)7(AL) (AY) B =A] (B.17)

The matrices elements on the left hand sides of the above matrix

equations are functions of the (i-1)™ joint variables and the numerical values
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transform Bg. The matrix elements on the right hand sides are products of A
matrices, and these are either zero, constant, or functions of the 1™ to 4 joint

variables. The products of A matrices, defined on the right hand side, are

evaluated starting at link four A}

. and working back towards the base frame as

follows:
C, -S5,0a,C,
S, C, 0a,S
- 474 18
1o 0 1 0 ©18)
0O 0 0 1
_C34 S34 0 —a4C34—a3C3
-S,, -C3% 0 —-a,S,,—a.S
A = 34 4934 4393 .19
! 0 0 1 0 B
0 0 O 1
- C2C34 Czss4 Sz - Cz (a4c34 + a3C3)
Al = -5,Cy S8, -G, -S,(a,Cy+aCy) (B.20)
= .
=Sy -G, 0 —2,5;,—a,S;
0 0 0 1

1. Differential joint angle; 0,:

If we pre-multiply equation B.14 by (A? )71 , we obtain equation B.15
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-1
(A1) BY - A,
¢, s 00 M O 8 Py -GGy CSy S, -G(a,CyutaCy)
0 o -1 dl . n, 0, a, py | $,Cs S8, —C, =8,(a,Cy+2,C) (B.Zl)
-S, G n, 0, a, p, =S, -Gy 0 —,S;,—a;S;
0 0 0 0 0 1 0 0 0 1

The left hand side of above equation is a function of the given numerical
values of generalized transform Bj pre-multiplied by a function of 0, inside
the inverse transform of A]. The right hand side is a function of 8,, 6,, and
0,. After rearranging the above equation, we obtain

Clnx+Slny C10x+Sloy Clax+Slay Clpx+Slpy

—IlZ -0, —a, _pz+dl
—SlnX+C1ny —SIOX+C10y —Slax+Clay —Slpx+C1py
0 0 0 1

_C2C34 Czs34 Sz _Cz (a4C34+33C3)
=5,C 8,8, -G, =5,(a,Cu+a5Cy)
=S -G, 0 —a,S;,—a,S;

0 0 0 1

(B.22)

The third row, third column element on the right hand side of equation
(B.22) is zero. Equating this to the element on the left hand at the same

location we obtain
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-Sa,+Ca, =0 (B.23)

This form denotes for a point symmetric redundancy, because it
generates two solutions that are symmetric about the origin as shown in Figure

B.2.

-
.y

Figure B.2. Point symmetric redundancy

The first solution can obtained by Adding S;a, to both sides and dividing by

Ciay , we get

i a
tan0, = sind, _ 3y (B.24)
cosO, a,
a
0,=tg” [—yj (B.25)
a

The angle 0, is obtained from the computer in term of atan2 function as

0, =atan Z(ay, ax) (B.26)
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the second solution for 0; can be obtained by adding to both sides — Cay, and
dividing by Cja,, and canceling —a, on the left hand side and C, on the right

side hand.

0, :atan2(—ay, —ax) (B.27)

After determining the value of 0, all elements inside the left hand side are
totally known. We check the right hand side for other functions of single

variables, 0, can be found.

2. Conjunctional joint angle; 0, :

Examining the right hand side for further unknown individual joint
coordinate, we can equate the 1,4 and 2,4 elements from left and right hand
sides of equation B.22.

Cp,+Sp,=-C,(a,C,+a,C,) (B.28)

-p,+d,=-S,(a,C,,+a,C)) (B.29)
then,

0, =atan2(—(—pz+ dl),—(Clpx+Slpy)) (B.30)
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The angle 0, here is always unique and there is no degeneracy as in the case of

the previous angle 0,.

We check the right hand side for further functions of single variables.

Finding none, we need for new pre-multiplication technique for obtaining new

information.

3. Wheel frame; 0,:

As mentioned before, the wheel is equipped for locomotive and
manipulative mechanism, meanwhile the inverse kinematics deals only with

manipulations apart from wheel rotation. If we pre-multiply equation B.15 by
1)! .
(Az) we obtain

1\! 0\! 0 2
) T\ ) DBy =48y
(AL)"-(A})"-B) =A

_C1C2 SC, =S, Sy, Do 00 a0 Py Cy Sy 0 —a4C34—a3C3_
=S, G 0 0 n, 0, a Pyl |-S -Cu 0 -aS;-a8,
CS, SS, C, -Cd|ln o a p| | 0 0 1 0

| 0 0 0 1 0O 0 0 1 0 0 0 1 ]

[C,C,n,+SCn,—-Sn, CC,o0,+SC,0,-S,0, CCa+SCa -S,a, CCp,+SCp,—S,p,+S,d, |
—S,nX+Clny —S,OX-f-C,Oy -Sa,+ Clay —S,px-i-Clpy
Clsznx+s,szny+cznz C1820X4-SIS20Y4-C20Z C,Szax+slszay+ Ca, CS,p,t Slszpy-i-Csz—Czdl
0 0 0 1
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_C34 S34 0 _a4C34_a3C3
_834 C34 0 —a4S34—a3S3
= 31
0 0 1 0 B3
0 0 0 1

Examining the right hand side, we can equate the 1,4 and 2,4 elements from
left and right hand sides
CC,p,+ Slc2py_ S,p,+ SZdl =-a,C;,—a,C, (B.32)

-S;p,+Cp, = —-a,S,,—a;S, (B.33)

The angle 0, can be solved by squaring and adding techniques. Let,
K,=-a,C,,—a,C, (B.34)

K,=-a,S;-a;8, (B.35)

These can be squared and added to give us one trigonometric equation as
(I<1 )2 + (KZ ) = (a4 )2 + (a3 )2 + 2 a3a4 (C3C34+ S3S34)

:(a4 )2 +(a3 )2 +2a;3,C, (B.306)
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The result implies that there are two solutions for angle 0 , which are

symmetric about zero; (+) sign assigns for RF leg and LR leg; and (-) sign

assigns for RR leg and LF leg.

0,= J_racos(((K1 )Y +(K,) —(a,) +(a, )2)/2a3a4) (B.37)

Substituting K, and K,, we get

0, = iacos(((ClCsz+SlCzpy—Ssz+ S.d, )2 +(—Slpx+ Cp, )2 —(a, )2 +(a, )2)/ 2a3a4)
(B.38)

4. Disjunctional joint angle; 0,:

The angle 0, can be solved by a recursion technique in inverse kinematics

problem; rearranging the equations B.34 and B.35, respectively, in the forms

K, =-C, (a4C4+ 213)+S3 (a4S4)

(B.39)
K, =-S,(a,C,+a,)-C,(a,S,) (B.40)
And then equating K3 and K4 respectively to
K,—a,C ta, (B.41)
K,=a,S, (B.42)

We obtain,
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K, =—C,K,+S,K, (B.43)

K, =—S,K,-CK, (B.44)

Applying mutual multiplications of equations B.43 and B.44, we obtain

~S,KK,-C,K,K, =—C,K,K,+S,K.K, (B.45)

Rearranging the above equation to

S3(—K1K3—K2K4)=C3 (K1K4—K2K3) (B.406)

Finally,

0, =atan 2(K,K,~ K,K,, ~K,K,~K,K,) (B.47)

Substituting K, K,, K3, and K4 we obtain
6; =atan 2((C]C2px +5,C,p,—S,p,+8,d, Xa4s4 )_ (_ Sip,+Cip, Xa4C4 +a, )>

(B.48)
a (Clcsz +8,C,p,=S,p, +5,d, Xa4C4+ a3 )_ (_ Sip.tCp, Xa4s4 ))
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Appendix C: Kinematic and dynamic parameters

Rotational matrix

Rotation matrix transformation from universal frame to base frame is given by
cpcld —cohsOcy+sdsy  chsOsy+spcy

R/ =| s6 cos @ cosy —cOsy (C.1)
—sgcl sgsOcy+cogsy —s@sinfsy+chcy

Rotation matrices of joints are given by

'C, 0 =S,

R/=S, 0 C, (C.2)
0 -1 0
C, S,

R)=|S, 0 -C, (C3)
01 0
-C, S, 0

Ri=|-S, -C, 0 (C.4)
0 0 1
'Cc, -S, 0

R;=[S, C, © (C.5)
0 0
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Position vectors
The position vector from the origin of frame 1 to 1+1 with respect to frame 1+1
is:

riﬂ — Riﬂri

i+l i+l

) T
:[am deanLm di+lcosai+l] (C.0)

Applying on the above relation starting from base to end-effector, we obtain

rP=[0 0 o] (C.7)
r'=[0 —-d, o (C.8)
iZ=[0 0 of (C.9)
r;=[a, 0 0] (C.10)
r;=[a, 0 0] (C.11)

Position vector of center of mass of link 1 with respect to frame O; is

r, =[0 0.5d, o] (C.12)
iZ,=[0 0 of (C.13)
r;,=[-05a, 0 of (C.14)

r:4=[—a4 0 O]T (C.15)
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Masses

The mass of the robot creates weight and inertia; weight is a force that
points down vertically in the universal coordinate system. Inertia on the other
hand creates resistance to acceleration caused by force. The distribution of
masses among the four legs and platform plays a major role in Specitying the

location of center of mass for the robot in the case of the rotations in legs.

Rovetr’s Center of mass

Each part of the rover is considered as a rigid body, while the rover mass
is represented in single concentrated point, called Center of Mass. In other
meaning, the weight of the entire robot mass is focused only at the center of

mass.

(C.16)

8] 8] 8] o) 8] U U
I ,ORmO + rc,lRl’nl + rc,lLl’nl + rc,ZRmZ + rc,2L1’nZ + I.c,3RF1’n3 + I.c,3Ran3 +

C

8] 8] 8] U U 8]
rc,3LFrn3 + rc,3LRl’n3 + rc,4RFrn4 + I.c,4RR 1’1’14 + I‘<:,4LFrn4 + I‘c,4LR 1’n4

(m0+2(m1+m2)+4(m3+m4))

where,
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I position vector of frame O; with respect to universal frame Oy

m; mass of the link 1 starting from platform link and ending at end-effector

link.

Inertia

Inertia creates a resistance against the change in velocity or acceleration
caused by external force. On other words, it is the propensity of the link at rest
to stay at rest and propensity of the link in motion to stay in motion. Therefore,
the link with high inertia will be in need for a sufficient amount of torque to
accelerate or decelerate the object itself. Inertia is considered as mass in the
case of linear motion and as moment of inertia in the case of rotational motion.

The mass moment of inertia is directly proportional to the mass distribution

and the shape of the link.

Inertia matrix for each rigid link is an identical matrix, and it includes
moments of inertia and products of inertia conforming six unique elements.
The moments of inertia are three diagonal elements, ie. Iy, Iy, I The

products of inertia are off-diagonal elements, i.e. Ly, Iy, Iy,
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XX Xy Xz
=1, I, 1, (C.17)
Xz Iyz 7z

The symmetry of link is used to recognize the principal axes. The off-
diagonal elements are equal zero due to symmetry. The principal mass
moments of inertia can be found without solving the corresponding eigenvalue

problem. The moments of inertia can be transformed between coordinate

systems.
I, 0 0
I=|0 I, 0 (C.18)
0 I

The SI unit for mass moment of inertia is kg m?>

For each leg, the links used are one rectangular prism, two slender rods,

and one thin disk as shown in Figure C.1



Z3

a
Z4I4

Figure C.1. Rover’s DH and dynamic parameters

X3, X4
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d,

-

b

—

(a) Link 0 O, A
y ms & as
O; NI E
Ag, A2
Y2 2 Os T_’ y; ——
X3
(b) Link 1 (¢) Link 2 (d) Link 3

(e) Link 4

Figure C.2. Link’s DH and Dynamic parameters.

Link O is a rectangular prism, and its inertia matrix can be obtain as
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a’+d> 0 0
I, =% 0 b+d> 0 (B.19)
0 0 a’+b’

Link 1 is a slender rod, and its inertia matrix can be obtain as

0
m(d)21 |
I, = 1121 00 0 (C.20)
00 1

Inertia matrix for link 2

00 0
L=[0 00 (C.21)
00 0

Link 3 is a slender rod, and its inertia matrix can be obtain as

m(a)20 0 0
13:% 010 (C.22)
00 1

Link 4 is a thin disk, and its inertia matrix can be obtain as

I, = (14 )ex - (14 )m

% 0 0

C.23

=(m4exa’42tex_m4inaéztin) 0 % 0 ( )
0 0 %




Now, the table of dynamic parameters can be filled up as follows

Table C.1. Dynamic parameters table.
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Link | m | ry ry | Ig I Iy 1,
0 |me| 0 o lo mo(a2+d12) m, (b2+d12) m, (a2+b2)
3 3 3
2 2
I |m| O 4 0 M 0 m, (d,)
2 12 12
2 my| O 010 0 0 0
a 2 2
3 Im| -2 10 o 0 m, (a,)° m, (a,)°
2 12 12
2 2 2 2 2 2
_ MyeyAgex ~Myindygin Myeygex ~Myindgin Myeydgex ~Myindygin
4 my | -a4 010 2 Z 5




216

Appendix D: Newton-Euler Recursive Formulation

The dynamic equations of the links are expressed here using the
relationships of moving coordinate systems. The numerical algorithm for
Newton-Euler Recursive method can be broken into two forward and
backward recursions.

— The forward recursion

For rotational link i+1

(’O;H = Ziqi+1 (Dl)

O, =Z(,., D.2)
0 __ 0 b

(’Oi+l - O‘)i + Ziqi+1 (D?))

<0 -0 .. 0 .

(’Oi+l - mi + Ziqi+1+ U‘)i x (Ziqi+1) (D4')
0 __ 0 i 0

Vig = O, X, 1V, (D.5)
o _ /0 X i + 0 X 0 X i + 0 6

ai+1 - (Di+1 ri+1 miﬂ ((’OHI ri+1) Vi (D )

The velocity and acceleration of center of mass of link 1 ate computed

respectively as follows:

VY = O)X T+ V) D.7)

0 _ 20 i 0 0 0 (]
al, = o)1+ o) x (o1, )+ V| D.8)

Once the velocities and accelerations of the center of mass of links are

computed, the inertia forces and moments can be computed for each mass link.
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Assuming the viscous damping friction is negligible, the total external
force is given by the Newton’s second law, and whilst the moment is given by
Euler’s equation. Newton-Euler’s methods first described with regard to the
fixed base coordinate system [55]

£ =m v, 0.9
T =Lol+ m?x(lico?) (D.10)

— The backward recursion

This approach transforms the generalized forces back from the end-
effector O,; to the base frame O,. The total force and moment exerted on
center of mass of link i1 are equal the forces and moments, respectively,
exerted on link i by link i-1 and i+1:

f'=F-F, D.11)
T =T -T° -1 xF — (& +1’)xf (D.12)

i+l i— i+l

Arranging the above equations in recursive form, we obtain

FO :FO

i i+l

TO = T°

i i+1

+f (D.13)
+ 1 X B+ (41 x £+ 17 (D.14)

i+1
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Computational approach
Multiply R}" with @ [65], we obtain

o, =R{, 00 (D.15)
Multiplying the above equation by R}, we obtain

ol =R"o (D.16)

i+l i+l

The lower sub script indicates for the reference coordinate frame. In
i+1

such a way, o, should be read as an angular velocity vector from frame O; to

frame Oy expressed in its own coordinate frame Ojg.

The rotation matrix of homogeneous transformation of frame O;y; with

respect O; is

cos0,,, —sinf,, cosa,,,  sinf,  sina,,,
i e .
R.,, =|sinf,, cosb  ,cosa, —cosh,sina.,, (D.17)
0 sina. cosa.

The rotation matrix of homogeneous transformation of frame O; with

respect Ojyy is equal to the transpose or inverse of R

R =(RL,) =(R.,) (D.18)
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The position vector from frame O; to frame Oj:; expressed in frame Ojy; is:

i+l _ pi+l i
L, =R/1,

cosf. , sinf, 0 a,,cosb. ,
=| —sin0,,,cosa.,, cosO., coso.,, sina., |-| a,,,sinb. ,

sinf, sina,,, —cosO,, sina.,, cosa.,, d.,

a

i+l
=|d,, sina,,, (D.19)

di+lcosai+1

Rewriting the recursive relations to be expressed to local reference
frame, we get:
— Forward recursion: 0 <i<n-1

For rotational joint axis 1+1:

i+l i+l i 5
o7 =R} [(DH' qi+1j (D.20)
il R i s iy, ¢
O‘);+l - Ri (O‘)1+ qi+1 + O)ix qi+1 ) (DZl)
Vi =00 XL+ RV, (D.22)
i+l onit] i+l i+l i+l i+1 i+lei
Vig =0, X1, +O‘)i+lx((’0i+lxri+l )+Ri Vi (D.23)
i+l i+l i+l i+l
Vc,i+1 =0, X rc,i+1+ Via D.24)
i+l elit] i+l i+l i+l i+l . i+l
Vc,i+1 - O‘)i+1>< I'c,i+l+ O‘)Hlx ((DHIX I.c,i+1 ) + Vi+1 (DZS)
i+l . i+l
fi+1 - mi+1Vc,i+1 (D26)

™ =T1" 0"+ 0'!x (Ii+1 o ) D.27)

c,itl i+ i+1 c,itl i+l
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— Backward recursion: n <1<0
After computing the inertial forces and moments for each link, backward
computational procedures can be followed by evaluating one a link at a time

starting from the end-effector frame and ending at the base frame:

F =R F!+f (D.28)

i i+17i+1

i+l

T =R (T (R0 (1, )x e D29
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Appendix E: Free-Body Diagram for four manipulators

Oor Oy Oor
® @  J
Vv A?LL v A?::
O e ¢ O
Al S Y A
OaL Oar
A A Al Ak
Os1r Osrr Osrr Osrr
Al A AN Al
Ourr Our Ourr Ourr

LSRF

------ i
Ok O
—t
Oh

Lo i Lir i ?\\

L4LF '

Figure E.1. Transform graphs for four legged manipulators starting from universal to
end-effectors.

Where, L;: Link.



Link 4RF, 4RR, 4LF, and 4LR

4LF

F4LF

4LF

T4LF

OsLr—
my
f4LF
FSLF / O4LF 4LF
SLF 4LF
T4LF
SLF
SLF .
Link 4LF

4RF

F4RF

4RF

T4RF

OsrE-
my
f4RF
FSRF / O4RF 4RF
4RF
o T4RF
SRF
SRF .
Link 4RF

Figure E.2. Forces and moments exerted on link 4RF, 4RR, 4LF, and 4LR.

4RF __ 1 4RFSRF | 4RF
F4RF - RSRF FSRF + f4RF

4RR __ 1y 4RRT=SRR 4RR
F4RR - RSRRFSRR + f4RR

F4 LR

4LR

T4LR

4LR
Osr

f4LR SLR

4LR O ALR SLR

4LR SLR
T4LR T

SLR
Link 4LR
FURR

4RR

T4RR

4RR
“Osrr

f4RR SRR

4RR O 4RR SRR

4RR SRR
T4RR T

SRR
Link 4RR

T4RF — R 4RF (TSRF+(RSRFr4RF)XFSRF)+(r4RF+r4RF )Xf4RF+T4RF

4RF SRF SRF 4RF4RF SRF 4RF

4RR _ 1y 4RR (SRR SRR __4RR SRR 4RR
Tire = Rerr (TSRR +(R4RRr4RR )X Frr )+(r4RR

And

bl

4LF __ 1 4LF=SLF 4LF
F4LF - RSLFFSLF + f4LF

4LR _ p 4LRSLR 4LR
F4LR - RSLR FSLR + f4LR

¢,4RF

4RF 4RF

4RR 4RR |, _4RR
+r, )Xf T Tyre

¢,4RR 4RR
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(E.1)

(E.2)

(E.3)

(E.4)

(E.5)

(E.6)
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4LF _ p 4LF [ SLF SLF_4LF SLF 4LF | _4LF 4LF |, _4LF
T,ir =Rgr (TSLF + (R4LFr4LF )X For ) + (r4LF T 4ir ) XL T Tarr (E.7)
4LR _ p 4LR [-SLR SLR _4LR SLR 4LR | _4LR 4LR | _4LR
T,ir =Rgxr (TSLR + (R4LRr4LR )X Eor )+ (r4LR TI R ) *fir T Tar (E.8)
Link 3RF, 3RR, 3LF, and 3LR
3RR
3LF | R | S F3RR
Fiie LR 3RE e}
Oy R IRF 2R TR
T33LLFF T3 LR T3 RF SRR
. m3
. m
Link 3LF @ = ™ Link 3RF & .
o Osrr
f3LF 3LR f3RF
3RF ARR
A FR 3RF F
3LF 4LR T T 4RR
T T 3RF 3RR
AL 3LF 3LR IR F4RF Osrr T4RR
E.. / Osir T, 4RF 4RR
4RF
Ti Lane

Figure E.3. Forces and moments exerted on link 3RF, 3RR, 3LF, and 3LR.

3RF __ p 3RF4RF 3RF
F3RF - R4RFF4RF + fSRF

3RR __ p 3RR74RR 3RR
F3RR - R4RRF4RR + f3RR

3RF __ 3RF 4RF 4RF_3RF
T3RF - R4RF (T4RF +(R3RFr3RF )

3RR _ 3RR 4RR 4RR _3RR
T3RR - R4RR (T4RR +(R3RRr3RR
and,

F3LF — R3LFF4LF+ f3LF

3LF 4LF ™ 4LF 3LF

(E.9)
(E.10)
XFi )+ (e e )< B+ (E.11)
)X Eiit )+ (e + 15 ) < B+ T (E.12)
(E.13)
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3LR __ 1 3LR 4LR 3LR
F3LR - R4LRF4LR + fSLR (E.14)
3LF _ 15 3LF [ m4LF 4LF_3LF 4LF 3LF , _3LF 3LF , 3LF
T =Ry (T4LF +(R3LFr3LF )X E i )+ (r3LF +rc,3LF)X fr T Tarr (E.15)
3LR _ p3LR [4LR 4LR_3LR 4LR 3LR | .3LR 3LR | _3LR
T;x =Rir (T4LR + (R3LRr3LR )X Fiir ) + (rSLR TR ) *fiir T Tak (E.10)
link 2R and link 2LL
3LR
F3LR FZR
F3LF 2R
3LF T2R
T3LF 2R
3LF F3RR
O my 3RR
: Link 2R 3RR
Link 2L \F;LL 2R T3RR
f2R
T 2R R
f2L 2L 2R 3RF
2L Tor T3RE
2L 3RF
T
Figure E.4. Forces and moments exerted on link 2R, 2L.
2R __ 1 2R T3RF 2R T3RR 2R
FzR - R3RFF3RF + R3RRF3RR + sz (E.17)
2R _ p2R 3RF 3RF_2R 3RF 2R 3RR 3RR_2R 3RR
Tor = Rige (T3RF +(R2R Lr )X i )+R3RR (T3RR +(R2R hLr )X Fire )+
(E.18)
2R, 2R 2R, 2R
(rZR IR ) xfir T ok
and,
2L _ p 2L 3LF 2L 3LR 2L
F2L - R3LFF3LF + R3LRF3LR + sz (E.19)
2L _ p 2R [3LF 3LF_ 2L 3LF 2L 3LR 3LR_2L 3LR
T,0 =R (T3LF +(R2L L )X Err )+ Rik (T3LR +(R2L Ly )X Er )+ (£.20)

2L oL 2L oL
(rZL +1~C,2L)>< £+t



link 1R, link 1L
¢
T N2
m;
Link 1R 0
IR F2215
fllll: Tzz}s
Tie

2L
FZL
T, O
1,
Link 1L
1L
Oo. \ E;
1L 1L
flL TlL
1L
TlL

Figure E.5. Forces and moments exerted on link 1R and link 1L.

IR _ pIR 2R IR
FlR - R2RF2R + flR

IR _ pIR (2R 2R IR 2R IR | IR IR | IR
T =Ry (T2R +(R1Rr1R )X Fp )+(rlR +rc,1R)Xf1R TR

And,

IL _ plL2L 1L
FIL - RzLFzL +f1L

IL _ piL (2L 2L IL Y 2L L L L, L
T =Ry (T2L +(R1L Ly )X 3% )+(r1L +rc,1L)X i+
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(E.21)

(E.22)

(E.23)

(E.24)
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Link 0

Figure E.6. Forces and moments exerted on platform.

For = RUFg + Ror Ry R+ (E.25)
Tox = RIS (T (RIS )* B )+ ROERYE (T (Ryagt )< BlE )+

OR _OR
(rOR I 0k

(E.26)
)* ik + T
And finally, forces and moments exerted on platform expressed in

universal frame can be given by,

Fo% = R(I;TRF(?I? (E.27)

Tox = RorTor (E.28)
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Appendix F: Universal forces and moments

Newton-Euler Recursive method provides a monitoring system for the
sources of dynamic forces and moments exerted on each link of the four
manipulators. The decomposition of universal forces and moments can make
the point clearer throughout studying the source of each force and moment
exerted on the universal frame.

1. The source of universal forces: The universal forces are vector

summations for:
e Forces exerted on center of link masses resulted from gravity and inertial

linear accelerations; RUf!, where 1 represents center of masses of the
links starting from platform link and ending at the wheel links, link by
link.

e FExternal normal forces exerted on the end-effectors; AJE, exerted on

the touching wheel with surface.

Substituting equation E.25 in equation E.27, we obtain
For = RopFor
= R{, [ RIFR +RORYEL+ £¢ |

= R1URF111§ + R1ULF11LL+ RE)JRf(?l:{ F.1)
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Substituting equations E.21 and E.23 in equation F.1, we obtain
Fyr =R I:R1211<{F221§+ fix } R [RlzlinzLL—’_ fllf] +Rorfor

= R;RF221§+ R;JLF221§+ R1URf111§+ R1ULf111f+ R(L)ij(?Il: F.2)

Substituting equations E.17 and E.19 in equation F.2, we obtain
U _pU 2R 3RF 2R 3RR 2R 9] 2L R3LF 2L R3LR 2L U ¢IR U ¢IL U cOR
FOR - RZR |:R3RFF3RF +R3RRF3RR +f2R :|+R2L |:R3LFF3LF +R3LRF3LR +f2L :|+R1RflR +R1LflL +R0RfOR

_pU 3RF U 3RR U 3LF U 3LR U 2R U 2L U ¢IR U ¢IL U pOR
- R3RFF3RF +R3RRF3RR +R3LFF3LF +R3LRF3LR +R2Rf2R +R2Lf2L +R1RflR +R1LflL +R0RfOR (F3)

Substituting equations E.9, E.10, E.13, and E.14 in equation F.3, we obtain
U _pU 3RF 4RF 3RF U 3RR p4RR 3RR U 3LF4LF 3LF
FOR - R3RF |:R4RFF4RF +f3RF :|+R3RR |:R4RRF4RR +f3RR j|+R3LF |:R4LFF4LF +f3LF j|+
U 3LR p4LR 3LR U 2R U 2L U ¢IR U ¢IL U pOR
R3LR |:R4LRF4LR +f3LR :|+R2Rf2R +R2Lf2L +R1RflR +R1LflL +RORfOR

_ LU p4RF, pU 14RR, pU pdLF, oU p4LR , o U @3RF, pU 3RR, U @3LF
= RyrpFirr T RyprFarr T RarpFire T Ryir Farr + R3pefire T R3prf3rr T R3ppf50r + (F.4)

U 3LR, pU 2R, pU ¢2L, pU pIR , pU plL , o U £OR
Ry pfiiR TRop o TRy G+ Ripfig + Ryp fi + Rop for

Finally, substituting equations E.1, E.2, E.5 and E.6 in equation F.4, we obtain

U _pU ARF-SRF | 4RF U ARR SRR , (4RR U ALFSLF | (4LF
For = Ryre |:RSRF Esrr *+ f4RF ]* Rirr |:RSRR Fsrr tf4rR ]+ Riir |:RSLFFSLF tr }r

U 4LR -SLR | 4LR U 3RFLpU (3RR, pU (3LF, pU @3LR , pU g2R
Ry |:RSLR Eir R ]+R3RFf3RF tRypefire + Rarefsir + Rarrfiir t Rorfor +

U 2L U ¢IR U ¢IL U pOR
RZLfZL +R1RflR +R1LflL +R0RfOR

_pU pSRF, pU SRR, pU rSLF, U p@SLR , pU (4RF, U 4RR
= Rgrp Fsrr + Ropr Fsrr T RsieFsir T Roir Fsir + Rarefare T Rarrfsrr *

SLR 4RF 4RR
U p4lF, pU (4R 1 pU (3RF, pU 3RR , pU g3LF, pU 3LR
Ryefire + Ryt itk T Rirefire + Riprfirr + Rapefiir + Rarrfiir + (F.5)

U (2R, pU 2L, pU ¢IR |, pU £l pU OR
Rorfir TRy G T Ripfir +RyLf L+ Rop for

Where, equation F.5 gives the vector summation of the external normal

forces exerted on the touching wheel with surface,
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4
Upes _pU SRF U SRR U SLF U SLR
ZRcchs - RSRF FSRF + RSRRFSRR + RSLFFSLF + RSLRFSLR (F6)
cs=1

Also, it gives the vector summations of the forces exerted on center of link

masses resulted from gravity and inertial accelerations

4

Uei _pU 4RF U 4RR U 4LF U 4LR 8] 3RF U 3RR U 3LF
ZRi fl - 1{4RFf4RF +R4RRf4RR +R4LFf4LF +R4LRf4LR +R3RFf3RF +R3RRf3RR +R3LFf3LF +
i=0

(F.7)

U (3R, pU (2R, pU (2L, pU gIR , pU ¢lL | pU (OR
R3yrf5ir TRy for + Ry 61+ Ripfig Ry i)+ Rop for

2. The source of universal moment: The moments exerted on platform are
vector summations for:
e Moment of exerted force on center of link masses resulted from gravity

and inertial linear accelerations; rUix(RiUff).

C,
e Moment exerted on center of link masses resulted from inertial angular
accelerations; Rt .
e Moments of external normal forces exerted on the end-effectors;

i x(RYE ), exerted on the touching wheel with surface.

Where, 1 represents link’s frame starting from platform link and ending

at the wheel links of four manipulators, link by link.

Successive substitutions inside equation E.28 starting from platform

frame and ending at end-effectors,
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T(}J = r4RF (RSRFFSS%}‘:) I4RR (RSRRFSSllsI}; )+YAPLF (RSLFFSSE§)+rA}JLR (RSLRFSSLLRR)
rcI,J4RF ( 4RFfjl§lf) T 3RF ( SrefiRr ) U4RR (RERRfjl]sl?) L3RR (RERRQ}];}];)
rcL,JzRX(Rngzsz)+rcl,J1RX<R1URf11§ )+rcl,J0RX(R(l)JRf(?1§)+rcl,JlLX(R1ULf11LL)+rcL,JzLX(RgLf22{“)+ (F.8)
rct,jSLFX(RELFfSSI]:;) [,j4LFX(R4[1JLFf:]I:If) I,j3LRX<R§JLRf;]]:1}§) I,j4LRX(R}1JLRffII:RR)
4RF 3RF 3RR 4LF 3LF 4LR 3LR

U U U U U
R4rrT4rr+ R3ppT3Re+ R4RRT4RR + R3RRT3RR + R4 pTar + Ryp T p + Ryr Tarr + R3R 3R +

U 2R, pU _IR, pU 2L OR
RZRTZR+R1RTIR+R2LT2L+RILT +R0RT



Matlab Code

main_menu_dynamic.m

function m= main_menu_dynamic()

close all;
Locomotion Case = DN’

while 1,
clc

which = menu(' Dynamic Case y e
' 1. Wheels Motion on Flat Surface.................... .
' 2. Wheels, RFDJ and RRDJ Motion on Flat Surface ....... L
' 3. Wheels, RCJ and LCJ Motion on Flat Surface....... L
"4, Wheels, RCJ,LCJ,RDJ,& LDJ Motion on Flat Surface ',
' 5. Wheels Motion on Step Flat Surface............... e
' 6. Wheels, RFDJ and RRDJ Motions on Step Flat Surface..‘,

' 7. Wheels, RDJ and LDJ Motion on Inclined Surface....,,,,", ...

' 8. Wheels Motion on Flat & Inclined Surface............. L
' 9. Wheels Motion on Sinusoidal Surface.................. "

'10. Wheels Motion on Non-uniform Surface.................. -
'Exit");

if which ==
close all;
Surface geometry ='F'; % GGl
Touch=[1111],;

Rover 1 % q= Conf 0; g= Conf 1;

Vv =2; processes;

Moment]l = Momentt;

Tow_CRearl = Tow_CRear; Tow_CFrontl = Tow_CFront;
Tow_CLeftl = Tow_CLeft; Tow_CRightl = Tow_CRight;
Normal Forcesl =Normal Forces;

qml = qm;

Forcel =Force;

fcl = fc;

fc Momentl = fc_ Moment;

towcl = towc;

f gravityl =f gravity;

f inertiall = f inertial,

f gravity Momentl = f gravity Moment;

f inertial Momentl = f inertial Moment;

NF_momentl = NF_moment;
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vv=4; processes;

Moment2 = Momentt;

Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
Normal_Forces2 = Normal Forces;

qm2 = qm;

Force2 = Force;

fc2 = fc;

fc Moment2 = fc Moment;

towc2 = towc;

f gravity2 =f gravity;

f inertial2 = f inertial;

f gravity Moment2 = f gravity Moment;

f inertial Moment2 = { inertial Moment;

NF_moment2 = NF_moment;

vv=>5; processes;

Moment3 = Momentt;

Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
Normal Forces3 = Normal Forces;

qm3 = qm;

Force3 =Force;

fc3 = fc;

fc Moment3 = fc_ Moment;

towe3 = towc;

f gravity3 =f gravity;

f inertial3 = f inertial;

f gravity Moment3 = f gravity Moment;

f inertial Moment3 = f inertial Moment;

NF_moment3 = NF_moment;

elseif which == 2,
close all;
Surface geometry ='F'; % GGl
Touch=[1111];

Rover 5 % q= Conf 5; g= Conf 0;

VvV =2; processes;

Moment]l = Momentt;

Tow_CRearl = Tow_CRear; Tow_CFrontl = Tow_CFront;
Tow_CLeftl = Tow_CLeft; Tow_CRightl = Tow_CRight;
Normal Forcesl = Normal Forces;

qml = qm;

Forcel = Force;

fcl = fc;

fc Momentl = fc Moment;

towcl = towc;

f gravityl =f gravity;

f inertiall = f inertial,

f gravity Momentl = f gravity Moment;
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f inertial Momentl = f inertial Moment;
NF_momentl = NF_moment;

vv=4; processes;

Moment2 = Momentt;

Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
Normal_Forces2 = Normal Forces;

qm2 = qm;

Force2 = Force;

fc2 = fc;

fc Moment2 = fc_ Moment;

towc2 = towc;

f gravity2 ={ gravity;

f inertial2 = f inertial;

f gravity Moment2 = f gravity Moment;

f inertial Moment2 = f inertial Moment;

NF_moment2 = NF_moment;

vv=135; processes;

Moment3 = Momentt;

Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
Normal Forces3 = Normal Forces;

qm3 = qm;

Force3 =Force;

fc3 = fc;

fc Moment3 = fc Moment;

towc3 = towc;

f gravity3 =f gravity;

f inertial3 = f inertial,

f gravity Moment3 = f gravity Moment;

f inertial Moment3 = f inertial Moment;

NF_moment3 = NF_moment;

elseif which == 3,
close all;
Surface geometry ='F'; % GGl
Touch=[1111];

Rover 7 % q= Conf 6; g= Conf 0;

Vv = 2; processes;

Moment]l = Momentt;

Tow_CRearl = Tow_CRear; Tow_CFrontl = Tow_CFront;
Tow_CLeftl = Tow_CLeft; Tow_CRightl = Tow_CRight;
Normal Forcesl = Normal Forces;

qml = qm;

Forcel = Force;

fcl = fc;

fc Momentl = fc Moment;

towcl = towc;
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f gravityl =f gravity;

f inertiall = f inertial;

f gravity Momentl = f gravity Moment;
f inertial Momentl = f inertial Moment;
NF_momentl = NF_moment;

vv=4; processes;

Moment2 = Momentt;

Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
Normal Forces2 = Normal Forces;

qm2 = qm;

Force2 = Force;

fc2 = fc;

fc Moment2 = fc_ Moment;

towc2 = towc;

f gravity2 =f gravity;

f inertial2 = f inertial;

f gravity Moment2 = f gravity Moment;

f inertial Moment2 = f inertial Moment;

NF_moment2 = NF_moment;

vv=135; processes;

Moment3 = Momentt;

Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
Normal_Forces3 = Normal Forces;

qm3 = qm;

Force3 = Force;

fc3 = fc;

fc Moment3 = fc Moment;

towc3 = towc;

f gravity3 =f gravity;

f inertial3 = f inertial;

f gravity Moment3 = f gravity Moment;

f inertial Moment3 = f inertial Moment;

NF_moment3 = NF_moment;

elseif which == 4,
close all;
Surface geometry ='F'; % GGl
Touch=[1111];

Rover 8 % q= Conf_7; qg= Conf 0;

Vv = 2; processes;

Moment]l = Momentt;

Tow_CRearl = Tow_CRear; Tow_CFrontl = Tow_CFront;
Tow_CLeftl = Tow_CLeft; Tow_CRightl = Tow_CRight;
Normal_Forcesl = Normal Forces;

qml =qm;

Forcel = Force;



235

fcl =fc;

fc Momentl = fc Moment;

towcl = towc;

f gravityl =f gravity;

f inertiall = f inertial;

f gravity Momentl = f gravity Moment;
f inertial Momentl = f inertial Moment;
NF_moment] = NF_moment;

vv=4; processes;

Moment2 = Momentt;

Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
Normal Forces2 = Normal Forces;

qm2 = qm;

Force2 = Force;

fc2 = fc;

fc Moment2 = fc Moment;

towc2 = towc;

f gravity2 =f gravity;

f inertial2 = f inertial,

f gravity Moment2 = f gravity Moment;

f inertial Moment2 = f inertial Moment;

NF_moment2 = NF_moment;

vv=135; processes;

Moment3 = Momentt;

Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
Normal_Forces3 = Normal Forces;

qm3 = qm;

Force3 = Force;

fc3 = fc;

fc Moment3 = fc Moment;

towc3 = towc;

f gravity3 =f gravity;

f inertial3 = f inertial;

f gravity Moment3 = f gravity Moment;

f inertial Moment3 = f inertial Moment;

NF_moment3 = NF_moment;

elseif which == 5,
close all;
Surface geometry ='S'; % GG2
Touch=[1011];

Rover 6 % q= Conf 5; g= Conf 5;

Vv = 2; processes;

Moment]l = Momentt;

Tow_CRearl = Tow_CRear; Tow_CFrontl = Tow_CFront;
Tow_CLeftl = Tow_CLeft; Tow_CRightl = Tow_CRight;
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Normal Forcesl =Normal Forces;

gqml = qm;

Forcel =Force;

fcl =fc;

fc Momentl = fc_ Moment;

towcl = towc;

f gravityl ={ gravity;

f inertiall = f inertial;

f gravity Momentl = f gravity Moment;
f inertial Momentl = f _inertial Moment;
NF_momentl = NF_moment;

vv=4; processes;

Moment2 = Momentt;

Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
Normal_Forces2 = Normal Forces;

qm2 = qm;

Force2 = Force;

fc2 = fc;

fc Moment2 = fc Moment;

towc2 = towc;

f gravity2 =f gravity;

f inertial2 = f inertial;

f gravity Moment2 = f gravity Moment;

f inertial Moment2 = f inertial Moment;

NF_moment2 = NF_moment;

vv=35; processes;

Moment3 = Momentt;

Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
Normal Forces3 = Normal Forces;

qm3 = qm;

Force3 = Force;

fc3 = fc;

fc Moment3 = fc_ Moment;

towe3 = towc;

f gravity3 ={ gravity;

f inertial3 = f inertial;

f gravity Moment3 = f gravity Moment;

f inertial Moment3 = f inertial Moment;

NF_moment3 = NF_moment;

elseif which == 6,
close all;
Surface geometry ='S"; % GG2
Touch=[101 1]}

Rover 1 % q= Conf 0; g= Conf 1;
Vv = 2; processes;
Moment]l = Momentt;



237

Tow_CRearl = Tow_CRear; Tow_CFrontl = Tow_CFront;
Tow_CLeftl = Tow_CLeft; Tow_CRightl = Tow_CRight;
Normal Forcesl = Normal Forces;

qml =qm;

Forcel = Force;

fcl =fc;

fc Momentl = fc Moment;

towcl = towc;

f gravityl ={ gravity;

f inertiall = f inertial;

f gravity Momentl = f gravity Moment;

f inertial Momentl = f_inertial Moment;

NF_momentl = NF_moment;

Rover 10 % q= Conf 0; g= Conf 9;

vV =2; processes;

Moment2 = Momentt;

Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
Normal Forces2 = Normal Forces;

qm2 = qm;

Force2 = Force;

fc2 = fc;

fc Moment2 = fc Moment;

towc2 = towc;

f gravity2 =f gravity;

f inertial2 = f inertial;

f gravity Moment2 = f gravity Moment;

f inertial Moment2 = { inertial Moment;

NF_moment2 = NF_moment;

Rover 9 % q= Conf 0; g= Conf 8;

vV =2; processes;

Moment3 = Momentt;

Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
Normal Forces3 = Normal Forces;

qm3 = qm;

Force3 = Force;

fc3 = fc;

fc Moment3 = fc Moment;

towc3 = towc;

f gravity3 =f gravity;

f inertial3 =f inertial;

f gravity Moment3 = f gravity Moment;

f inertial Moment3 = { inertial Moment;

NF_moment3 = NF_moment;

elseif which == 7,
close all;
Surface geometry ='T"; % GG9
Touch=[1111];
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Rover 1 % q= Conf 0; g= Conf 1;

vv =2.5; processes;

Moment]l = Momentt;

Tow_CRearl = Tow_CRear; Tow_CFrontl = Tow_CFront;
Tow_CLeftl = Tow_CLeft; Tow_CRightl = Tow_CRight;
Normal Forcesl = Normal Forces;

qml = qm;

Forcel = Force;

fcl = fc;

fc Momentl = fc Moment;

towcl = towc;

f gravityl =f gravity;

f inertiall = f inertial;

f gravity Momentl = f gravity Moment;

f inertial Momentl = f inertial Moment;

NF_moment] = NF_moment;

Rover 12 % q= Conf 0; g= Conf 11;

vv=2.5; processes;

Moment2 = Momentt;

Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
Normal Forces2 = Normal Forces;

qm2 = qm;

Force2 = Force;

fc2 = fc;

fc Moment2 = fc Moment;

towc2 = towc;

f gravity2 =f gravity;

f inertial2 = f inertial,

f gravity Moment2 = f gravity Moment;

f inertial Moment2 = f inertial Moment;

NF_moment2 = NF_moment;

Rover 11 % q= Conf 0; g= Conf 10;

vv=25; processes;

Moment3 = Momentt;

Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
Normal Forces3 = Normal Forces;

qm3 = qm;

Force3 =Force;

fc3 = fc;

fc Moment3 = fc_ Moment;

towc3 = towc;

f gravity3 =f gravity;

f inertial3 = f inertial;

f gravity Moment3 = f gravity Moment;

f inertial Moment3 = f inertial Moment;

NF_moment3 = NF_moment;
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elseif which == 8§,
close all;
Surface geometry = 'FI'; % GGS5
Touch=[1111];
Rover 1 % q= Conf 0; g= Conf 1;

vv =(.5; processes;

Moment]l = Momentt;

Tow_CRearl = Tow_CRear; Tow_CFrontl = Tow_CFront;
Tow_CLeftl = Tow_CLeft; Tow_CRightl = Tow_CRight;
Normal Forcesl = Normal Forces;

qml = qm;

Forcel =Force;

fcl = fc;

fc Momentl = fc_ Moment;

towcl = towc;

f gravityl =f gravity;

f inertiall = f inertial;

f gravity Momentl = f gravity Moment;

f inertial Momentl = f inertial Moment;

NF_momentl = NF_moment;

Rover 14 % q=Conf 13; g=Conf 13;
vv=0.5; processes;

Moment2 = Momentt;

Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
Normal Forces2 = Normal Forces;

qm2 = qm;

Force2 = Force;

fc2 =fc;

fc Moment2 = fc_ Moment;

towc2 = towc;

f gravity2 ={ gravity;

f inertial2 = f inertial;

f gravity Moment2 = f gravity Moment;

f inertial Moment2 = f inertial Moment;

NF_moment2 = NF_moment;

Rover 13 % q=Conf 12; g= Conf 12;
vv=0.5; processes;

Moment3 = Momentt;

Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
Normal Forces3 = Normal Forces;

qm3 = qm;

Force3 = Force;

fc3 = fc;

fc Moment3 = fc_ Moment;

towc3 = towc;

f gravity3 =f gravity;

f inertial3 = f inertial;
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f gravity Moment3 = f gravity Moment;
f inertial Moment3 = { inertial Moment;
NF_moment3 = NF_moment;

elseif which ==9,
close all;
Surface _geometry ='D'; % GG7
Touch=[1111];
Rover 14 % q= Conf _15; g= Conf 15;

vv =1; processes;

Moment]l = Momentt;

Tow_CRearl = Tow_CRear; Tow_CFrontl = Tow_CFront;
Tow_CLeftl = Tow_CLeft; Tow_CRightl = Tow_CRight;
Normal_Forcesl = Normal Forces;

qml =qm;

Forcel = Force;

fcl = fc;

fc Momentl = fc Moment;

towcl = towc;

f gravityl =f gravity;

f inertiall = f inertial;

f gravity Momentl = f gravity Moment;

f inertial Momentl = f inertial Moment;

NF_moment] = NF_moment;

Rover 14 % q= Conf 15; g= Conf 15;

vV =2; processes;

Moment2 = Momentt;

Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
Normal_Forces2 = Normal Forces;

qm2 = qm;

Force2 = Force;

fc2 = fc;

fc Moment2 = fc Moment;

towc2 = towc;

f gravity2 =f gravity;

f inertial2 = f inertial;

f gravity Moment2 = f gravity Moment;

f inertial Moment2 = f inertial Moment;

NF_moment2 = NF_moment;

Rover 14 % q= Conf _15; g= Conf 15;

vv=3; processes;

Moment3 = Momentt;

Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
Normal Forces3 = Normal Forces;

qm3 = qm;

Force3 =Force;

fc3 = fc;



fc Moment3 = fc Moment;

towc3 = towc;

f gravity3 =f gravity;

f inertial3 = f inertial,

f gravity Moment3 = f gravity Moment;
f inertial Moment3 = f inertial Moment;
NF_moment3 = NF_moment;

elseif which == 10,

close all;

Surface geometry ='U"; % GG11
Touch=[1111];

Rover 16 % q= Conf 0; g= Conf 14;

vv = 0.05; processes;

Moment]l = Momentt;

Tow_CRearl = Tow_CRear; Tow_CFrontl = Tow_CFront;
Tow_CLeftl = Tow_CLeft; Tow_CRightl = Tow_CRight;
Normal Forcesl = Normal Forces;

qml =qm;

Forcel = Force;

fcl = fc;

fc Momentl = fc Moment;

towcl = towc;

f gravityl =f gravity;

f inertiall = f inertial;

f gravity Momentl = f gravity Moment;

f inertial Momentl = f inertial Moment;

NF_moment] = NF_moment;

Rover 16 % q= Conf 0; g= Conf 14;
vv=0.05; processes;

Moment2 = Momentt;

Tow_CRear2 = Tow_CRear; Tow_CFront2 = Tow_CFront;
Tow_CLeft2 = Tow_CLeft; Tow_CRight2 = Tow_CRight;
Normal Forces2 = Normal Forces;

qm2 = qm;

Force2 = Force;

fc2 = fc;

fc Moment2 = fc Moment;

towc2 = towc;

f gravity2 =f gravity;

f inertial2 = f inertial;

f gravity Moment2 = f gravity Moment;

f inertial Moment2 = { inertial Moment;

NF_moment2 = NF_moment;

Rover 16 % q= Conf 0; g= Conf 14;

vv=1; processes;

Moment3 = Momentt;

Tow_CRear3 = Tow_CRear; Tow_CFront3 = Tow_CFront;
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Tow_CLeft3 = Tow_CLeft; Tow_CRight3 = Tow_CRight;
Normal Forces3 = Normal Forces;

qm3 = qm;

Force3 =Force;

fc3 = fc;

fc Moment3 = fc Moment;

towc3 = towc;

f gravity3 =f gravity;

f inertial3 = f inertial;

f gravity Moment3 = f gravity Moment;
f inertial Moment3 = f inertial Moment;
NF_moment3 = NF_moment;

elseif which==11,
close all;
break;
end

%
% Figures of Results
%

figure(1)
subplot(3,1,1)
hold on
plot(t, qm1(1,1:np)*180/pi, 'k-', 'linewidth',2)
plot(t, qm2(1,1:np)*180/pi, 'g-', 'linewidth',2)
plot(t, qm3(1,1:np)*180/pi, 'b-', 'linewidth’,2)
title('platform orientation angles w/2 universal frame')
ylabel('Psi (deg)")
grid
hold off

subplot(3,1,2)

hold on

plot(t, qm1(2,1:np)*180/pi, 'k-', 'linewidth',2)
plot(t, qm2(2,1:np)*180/pi, 'g-', 'linewidth',2)
plot(t, qm3(2,1:np)*180/pi, 'b-', 'linewidth',2)
ylabel('Phi (deg)")

grid

hold off

subplot(3,1,3)

hold on

plot(t, qm1(3,1:np)*180/pi, 'k, 'linewidth',2)
plot(t, qm2(3,1:np)*180/pi, 'g', 'linewidth',2)
plot(t, qm3(3,1:np)*180/pi, 'b', 'linewidth',2)
xlabel('Time (s)");

ylabel('Theta (deg)")

grid

hold off



figure(2)

subplot(4,1,1)

hold on

%axis([.01 np-1 -1 30])

plot(t, Normal Forces1(1,1:np), 'k-', 'linewidth',2)
plot(t, Normal Forces2(1,1:np), 'g-', 'linewidth',2)
plot(t, Normal Forces3(1,1:np), 'b-', 'linewidth',2)
title('Normal force exerted on contact wheels')
ylabel('FnRF")

grid

hold off

subplot(4,1,2)

hold on

%axis([.01 np-1 -1 15])

plot(t, Normal Forces1(2,1:np), 'k-', 'linewidth',2)
plot(t, Normal Forces2(2,1:np), 'g-', 'linewidth',2)
plot(t, Normal Forces3(2,1:np), 'b-', 'linewidth',2)
ylabel('FnRR")

grid

hold off

subplot(4,1,3)

hold on

%axis([.01 np-1 -1 30])

plot(t, Normal Forces1(3,1:np), 'k-', 'linewidth',2)
plot(t, Normal Forces2(3,1:np), 'g-', 'linewidth',2)
plot(t, Normal Forces3(3,1:np), 'b-', 'linewidth',2)
ylabel('FnLF")

grid

hold off

subplot(4,1,4)
hold on
%axis([.01 np-1 -1 15])
plot(t, Normal Forces1(4,1:np), 'k-', 'linewidth',2)
plot(t, Normal Forces2(4,1:np), 'g-', 'linewidth',2)
plot(t, Normal Forces3(4,1:np), 'b-', 'linewidth',2)
xlabel('Time (s)");
ylabel('FnLR")
grid
hold off

figure(3)
hold on
plot(t, Tow_CRearl(1:np),’k--", 'linewidth',2)
plot(t, Tow_CRear2(1:np),'g--', 'linewidth',2)
plot(t, Tow_CRear3(1:np),'b--", 'linewidth',2)

plot(t, Moment1(3,1:np),'k-', 'linewidth',2)

243



plot(t, Moment2(3,1:np),'g-', 'linewidth',2)
plot(t, Moment3(3,1:np),'b-', 'linewidth',2)

plot(t, Tow_CFrontl(1:np),'’k--', 'linewidth',2)
plot(t, Tow_CFront2(1:np),'g--', 'linewidth',2)
plot(t, Tow_CFront3(1:np),'b--', 'linewidth',2)

title('exerted Moment about zu-axis of universal frame')
ylabel('TU(3) (N.m)")

xlabel('Time (s)");

grid

hold off

figure(4)

hold on

plot(t, Tow_CLeft1(1:np),'k--', 'linewidth',2)
plot(t, Tow_CLeft2(1:np),'g--', 'linewidth',2)
plot(t, Tow_CLeft3(1:np),'b--', 'linewidth',2)

plot(t, Moment1(2,1:np),'k-', 'linewidth',2)
plot(t, Moment2(2,1:np),'g-', 'linewidth',2)
plot(t, Moment3(2,1:np),'b-', 'linewidth',2)

plot(t, Tow_CRight1(1:np),'k--', 'linewidth',2)
plot(t, Tow_CRight2(1:np),'g--", 'linewidth',2)
plot(t, Tow_CRight3(1:np),'b--', 'linewidth',2)

title('exerted Moment about yu-axis of universal frame')
ylabel('TU(2) (N.m)")

xlabel('Time (s)");

grid

hold off

figure(5)
subplot(3,1,1)
hold on
plot(t, Forcel(1,1:np), 'k-', 'linewidth',2)
plot(t, Force2(1,1:np), 'g-', 'linewidth',2)
plot(t, Force3(1,1:np), 'b-", 'linewidth',2)
title("Universal force (N)')
ylabel('F_X u')
grid
hold off

subplot(3,1,2)

hold on

plot(t, Forcel(2,1:np), 'k-', 'linewidth',2)
plot(t, Force2(2,1:np), 'g-', 'linewidth',2)
plot(t, Force3(2,1:np), 'b-', 'linewidth',2)
ylabel('F_Y u')

grid
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hold off

subplot(3,1,3)

hold on

plot(t, Forcel(3,1:np), 'K', 'linewidth',2)
plot(t, Force2(3,1:np), 'g', 'linewidth',2)
plot(t, Force3(3,1:np), 'b', 'linewidth',2)
xlabel('Time (s)");

ylabel('F_Z u'")

grid

hold off

figure(6)
subplot(3,1,1)
hold on
plot(t, fc1(1,1:mp), 'k-', 'linewidth',2)
plot(t, fc2(1,1:np), 'g-', 'linewidth',2)
plot(t, fc3(1,1:np), 'b-', 'linewidth',2)
title("Universal fc (N)")
ylabel('fc X u')
grid
hold off

subplot(3,1,2)

hold on

plot(t, fc1(2,1:mp), 'k-', 'linewidth',2)
plot(t, fc2(2,1:np), 'g-', 'linewidth',2)
plot(t, fc3(2,1:np), 'b-', 'linewidth',2)
ylabel('fc_ Y u')

grid

hold off

subplot(3,1,3)

hold on

plot(t, fc1(3,1:np), 'k', 'linewidth',2)
plot(t, fc2(3,1:np), 'g', 'linewidth',2)
plot(t, fc3(3,1:np), 'b', 'linewidth',2)
xlabel('Time (s)");

ylabel('fc_Z u")

grid

hold off

figure(7)
subplot(3,1,1)
hold on
plot(t, fc Moment1(1,1:np), 'k-', 'linewidth',2)
plot(t, fc_ Moment2(1,1:np), 'g-', 'linewidth',2)
plot(t, fc_ Moment3(1,1:np), 'b-', 'linewidth',2)
title("Universal fc Moment (N.m)")
ylabel('fc Moment X u')
grid
hold off
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subplot(3,1,2)

hold on

plot(t, fc_ Moment1(2,1:np), 'k-', 'linewidth',2)
plot(t, fc_ Moment2(2,1:np), 'g-', 'linewidth',2)
plot(t, fc_ Moment3(2,1:np), 'b-', 'linewidth',2)
ylabel('fc Moment Y u')

grid

hold off

subplot(3,1,3)

hold on

plot(t, fc_ Moment1(3,1:np), 'k, 'linewidth',2)
plot(t, fc Moment2(3,1:np), 'g', 'linewidth',2)
plot(t, fc Moment3(3,1:np), 'b', 'linewidth',2)
xlabel('Time (s)");

ylabel('fc Moment z u'")

grid

hold off

figure(8)
subplot(3,1,1)
hold on
plot(t, towc1(1,1:np), 'k-', 'linewidth',2)
plot(t, towc2(1,1:np), 'g-'", 'linewidth',2)
plot(t, towc3(1,1:np), 'b-', 'linewidth',2)
title("Universal towc (N.m)")
ylabel('towe_x_u')
grid
hold off

subplot(3,1,2)

hold on

plot(t, towc1(2,1:np), 'k-', 'linewidth',2)
plot(t, towc2(2,1:np), 'g-', 'linewidth',2)
plot(t, towc3(2,1:np), 'b-', 'linewidth',2)
ylabel('towc_y u")

grid

hold off

subplot(3,1,3)

hold on

plot(t, towc1(3,1:np), 'k', 'linewidth',2)
plot(t, towc2(3,1:np), 'g', 'linewidth',2)
plot(t, towc3(3,1:np), 'b', 'linewidth',2)
xlabel("Time (s)");

ylabel('towe_z u')

grid

hold off

figure(9)



subplot(3,1,1)

hold on

plot(t, f gravityl(1,1:np), 'k-', 'linewidth',2)

plot(t, f gravity2(1,1:np), 'g-', 'linewidth',2)

plot(t, f_gravity3(1,1:np), 'b-', 'linewidth',2)

title("Universal gravity force resulted from center of mass of links(N)")
ylabel('Gravity force x u')

grid

hold off

subplot(3,1,2)

hold on

plot(t, f gravityl(2,1:np), 'k-', 'linewidth',2)
plot(t, f gravity2(2,1:np), 'g-', 'linewidth',2)
plot(t, f_gravity3(2,1:np), 'b-', 'linewidth',2)
ylabel('Gravity force y u')

grid

hold off

subplot(3,1,3)

hold on

plot(t, f gravityl1(3,1:np), 'k', 'linewidth',2)
plot(t, f gravity2(3,1:np), 'g', 'linewidth',2)
plot(t, f gravity3(3,1:np), 'b', 'linewidth',2)
xlabel('Time (s)");

ylabel('Gravity force z u')

grid

hold off

figure(10)
subplot(3,1,1)
hold on
plot(t, f_inertial1(1,1:np), 'k-', 'linewidth',2)
plot(t, f inertial2(1,1:np), 'g-', 'linewidth',2)
plot(t, f_inertial3(1,1:np), 'b-', 'linewidth',2)
title('Universal inertial force resulted from center of mass of links(N)")
ylabel('Inertial force_x u')
grid
hold off

subplot(3,1,2)

hold on

plot(t, f_inertiall(2,1:np), 'k-', 'linewidth',2)
plot(t, f inertial2(2,1:np), 'g-', 'linewidth',2)
plot(t, f_inertial3(2,1:np), 'b-', 'linewidth',2)
ylabel('Inertial force y u')

grid

hold off

subplot(3,1,3)
hold on
plot(t, f_inertiall(3,1:np), 'k', 'linewidth',2)
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plot(t, f inertial2(3,1:np), 'g', 'linewidth',2)
plot(t, f inertial3(3,1:np), 'b', 'linewidth',2)
xlabel('Time (s)");

ylabel('Inertial force z u')

grid

hold off

figure(11)
subplot(3,1,1)
hold on
plot(t, f gravity Momentl(1,1:np), 'k-', 'linewidth',2)
plot(t, f_gravity Moment2(1,1:np), 'g-', 'linewidth',2)
plot(t, f gravity Moment3(1,1:np), 'b-", 'linewidth',2)
title("Universal Moment of gravity force resulted from center of mass of links(N.m)')
ylabel('Gravity Moment_x_u')
grid
hold off

subplot(3,1,2)

hold on

plot(t, f gravity Moment1(2,1:np), k-, 'linewidth',2)
plot(t, f gravity Moment2(2,1:np), 'g-', 'linewidth',2)
plot(t, f gravity Moment3(2,1:np), 'b-', 'linewidth',2)
ylabel('Gravity Moment_y u')

grid

hold off

subplot(3,1,3)

hold on

plot(t, f_gravity Momentl(3,1:np), 'k, 'linewidth',2)
plot(t, f gravity Moment2(3,1:np), 'g', 'linewidth',2)
plot(t, f_gravity Moment3(3,1:np), 'b', 'linewidth',2)
xlabel('Time (s)");

ylabel('Gravity Moment_z u')

grid

hold off

figure(12)
subplot(3,1,1)
hold on
plot(t, f inertial Moment1(1,1:np), k-, 'linewidth',2)
plot(t, f_inertial Moment2(1,1:np), 'g-', 'linewidth',2)
plot(t, f inertial Moment3(1,1:np), 'b-', 'linewidth',2)
title('Universal Moment of inertial force resulted from center of mass of links(N.m)')
ylabel('Inertial Moment_x_u')
grid
hold off

subplot(3,1,2)

hold on

plot(t, f inertial Moment1(2,1:np), k-, 'linewidth',2)
plot(t, f_inertial Moment2(2,1:np), 'g-', 'linewidth',2)
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plot(t, f inertial Moment3(2,1:np), 'b-', 'linewidth',2)
ylabel('Inertial Moment y u')

grid

hold off

subplot(3,1,3)

hold on

plot(t, f_inertial Moment1(3,1:np), 'k', 'linewidth',2)
plot(t, f inertial Moment2(3,1:np), 'g', 'linewidth',2)
plot(t, f_inertial Moment3(3,1:np), 'b', 'linewidth’,2)
xlabel('Time (s)");

ylabel('Inertial Moment_z u')

grid

hold off

figure(13)
subplot(3,1,1)
hold on
plot(t, NF_moment1(1,1:np), k-, 'linewidth',2)
plot(t, NF_moment2(1,1:np), 'g-', 'linewidth',2)
plot(t, NF_moment3(1,1:np), 'b-', 'linewidth',2)
title("Universal moments resulted from normal forces (N.m)")
ylabel('NF moment x u')
grid
hold off

subplot(3,1,2)

hold on

plot(t, NF_moment1(2,1:np), 'k-', 'linewidth',2)
plot(t, NF_moment2(2,1:np), 'g-', 'linewidth',2)
plot(t, NF_moment3(2,1:np), 'b-', 'linewidth',2)
ylabel('NF moment_y u'")

grid

hold off

subplot(3,1,3)

hold on

plot(t, NF_moment1(3,1:np), 'k', 'linewidth',2)
plot(t, NF_moment2(3,1:np), 'g', 'linewidth',2)
plot(t, NF_moment3(3,1:np), 'b', 'linewidth',2)
xlabel('Time (s)");

ylabel('NF moment z u')

grid

hold off

end




Processes.m

n = numrows(dh_dyn);
d=dh_dyn(2:n,2);
a=dh _dyn(2:n,3);
alpha =dh_dyn(2:n,4);
r=a(4); % radius of wheel

TOL = 0.00001; % tolerance value
%
% create time vector
%

t =[0:1:200];

np = numcols(t);

%
% trajectory of joints
%

[q_RF.,qd RF,qdd RF]=jtraj(q0(:,1), q1(:,1), t); % joint coordinate trajectory of right front leg
[ RR,qd RR,qdd RR]=jtraj(q0(:,2), q1(:,2),t); % joint coordinate trajectory of right rear leg
[q LF,qd LF,qdd LF]=jtraj(q0(:,3), q1(:,3), t); % joint coordinate trajectory of left front leg
[q LR,qd LR,qdd LR]=jtraj(q0(:,4), q1(:,4), t); % joint coordinate trajectory of left rear leg

if Locomotion Case =="ST'

[At4RF, At4RR, At4LF, At4LR, Vt4RF, Vt4RR, Vt4LF, Vt4LR, d 4RF,d 4RR,d 4LF,d 4LR,...
Thetadd RF, Thetadd RR, Thetadd LF, Thetadd LR, Thetad RF, Thetad RR, Thetad LF,

Thetad LR,...

Theta RF, Theta RR, Theta LF, Theta LR, tdelay R, tdelay L] =locomotion ST(vv, t, a, q0);

elseif Locomotion Case == 'DN'

[At4RF, At4RR, At4LF, At4LR, Vt4RF, Vt4RR, VH4LF, Vt4LR, d 4RF,d 4RR,d 4LF,d 4LR,...
Thetadd RF, Thetadd RR, Thetadd LF, Thetadd LR, Thetad RF, Thetad RR, Thetad LF,

Thetad LR,...
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Theta RF, Theta RR, Theta LF, Theta LR, tdelay R, tdelay L] = locomotion DN(Touch, vv, t, a, q0);

end

q RF(:,4) = Theta RF; qd RF(:,4) = Thetad RF; qdd RF(:,4) = Thetadd RF;
q RR(:,4) = Theta RR; qd RR(:,4) = Thetad RR; qdd RR(:,4) = Thetadd RR;
q LF(:,4) = Theta LF; qd LF(:,4) = Thetad LF; qdd LF(:,4) = Thetadd LF;

q LR(:,4)=Theta LR; qd LR(:,4) =Thetad LR; qdd LR(:,4) = Thetadd LR;

q RF=q RF'; qd RF=qd RF'; qdd RF =qdd RF';
g RR=q RR'; qd RR=qd RR'; qdd RR=qdd RR";
qLF=qLF; qd LF=qd LF; qdd LF=qdd LF}
q LR=q LR'; qd LR=qd LR'; qdd LR=qdd LR
%

%

% Ground geometry




%

if Surface geometry =="F'

[input RF, input RR, input LF, input LR, ...

beta SRF zs, beta SRR zs, beta SLF zs, beta SLR zs, ...

beta SRF ys, beta SRR ys, beta SLF ys, beta SLR ys] = GGI(t, tdelay R, tdelay L, a, q0);
elseif Surface geometry =="S'

[input RF, input RR, input LF, input LR, ...

beta SRF zs, beta SRR zs, beta SLF zs, beta SLR zs, ...

beta SRF ys, beta SRR ys, beta SLF ys, beta SLR ys] = GG2(t, tdelay R, tdelay L, a, q0);
elseif Surface geometry =='T'

[input RF, input RR, input LF, input LR, ...

beta SRF zs, beta SRR zs, beta SLF zs, beta SLR zs, ...

beta SRF ys, beta SRR ys, beta SLF ys, beta SLR ys] = GGI(t, tdelay R, tdelay L, a, q0);
elseif Surface geometry == 'FI'

[input RF, input RR, input LF, input LR, ...

beta SRF zs, beta SRR zs, beta SLF zs, beta SLR zs, ...

beta SRF ys, beta SRR ys, beta SLF ys, beta SLR ys] = GG5(t, tdelay R, tdelay L, a, q0);
elseif Surface geometry =='D'

[input RF, input RR, input LF, input LR, ...

beta SRF zs, beta SRR zs, beta SLF zs, beta SLR zs, ...

beta SRF ys, beta SRR ys, beta SLF ys, beta SLR ys] = GG7(t, tdelay_R, tdelay L, a, q0);

elseif Surface geometry =="'U'

[input RF, input RR, input LF, input LR, ...
beta SRF zs, beta SRR zs, beta SLF zs, beta SLR zs, ...

beta SRF ys, beta SRR ys, beta SLF ys, beta SLR_ys] = GGI11(t, tdelay R, tdelay L, a, q0,...

d 4RF,d 4RR, d 4LF, d 4LR);
end

theta S zs =[beta SRF zs; beta SRR zs; beta SLF zs; beta SLR_zs];
theta_ S ys =[beta SRF ys; beta SRR ys; beta SLF ys; beta SLR ys];

%
% surface flatness check
%

for p=1:np,

if (input RF(p) == input RR(p)) && (input_LF(p) == input_LR(p)) && (input RF(p) ==
input_LF(p))
Flat surface(p) =1;
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else
Flat_surface(p) = 0;
end
end

%
% Platform Attitute
%

Touches =[];

qm=[];

—

A OR OL=

100 0;..

b

o o ol
S —_=O
- o o

1
0-
0

geee
b}

q_RK=q_RF;
q LK=q LF;

input RK =input RF;
input LK = input LF;

B3 RK =beta SRF zs;
B3 LK =beta SLF zs;

for p=1:np,

% _ Pitch angle
theta 1R = q RK(1, p);
theta 1L =q LK(1, p);

Theta = (theta IR - theta 1L)/2 + ...
asin((input_RR(p) - input_RF(p))/(-a(3)*sin(q_RF(3,p))+a(3)*sin(q_RR(3,p))));

% Yaw angle
theta 4RK = q RK(4, p);
theta 4LK =q LK(4, p);

[A_OR 4RK] = Kinematic(q RK(:,p)', d, a, alpha, B3_RK(p), Theta);
[A_OL 4LK] = Kinematic(q_LK(:,p)', d, a, alpha, -B3_LK(p), -Theta);

r OR_4RK = A OR_4RK(1:3, 4);
A OR 4LK=A OR OL * A OL 4LK;
r OR_ 4LK=A OR 4LK(1:3, 4);

Psi = (-r*theta 4LK - r*theta 4RK)/(r OR_4RK(3) -r OR 4LK(3));

% Roll angle angle

r 4RK G xU = -input RK(p);
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r 4LK G xU =-input LK(p);

AA =1 OR 4RK(1)-r OR 4LK(1);
if abs(AA)< TOL

AA=0;
end

BB =r OR 4RK(3)-r OR 4LK(3) - 4*d(1);
if abs(BB)< TOL

BB =0;
end

if (BB)>=0
alfa = -atan2(AA,BB);

elseif (BB) <0
ifAA <O
alfa = -pi - atan2(AA,(BB));
elseif AA>=0
alfa = pi - atan2(AA,(BB));
end
end

Phi = asin((-r 4RK_G xU +r 4LK G xU)/...
(sqrt((r_OR_4RK(1) - r OR _4LK(1))"2 + (r_OR_4RK(3) -r_ OR _4LK(3) - 4*d(1))"2))) - alfa;

Ph= Phi *180/pi;

angle 0 = [Psi; Phi; Theta];
gm = [gqm angle 0];

%

% Contact Points in case of random surface
%

if Surface _geometry =="U'

if Phi> 0

Touch Legs=[101 1]}
elseif Phi <0

Touch Legs=[1110];
elseif Phi ==

Touch_Legs = Touch;
end

else
Touch Legs = Touch;
end

Touches = [Touches Touch Legs];

% contact check



A U OR =roty(Phi) * rotz(Theta) * rotx(Psi);

A U 4RK=A U OR * A OR_4RK;
r U 4RK =A U _4RK(1:3, 4);

r 4RK_G=[r 4RK_G xU - U 4RK(2) -r U _4RK(3)];

r U G=r U 4RK+r 4RK G;

4RK=A G U*A U OR*A OR 4RK;

>
o
=

_OR_ U=inv(A U OR);
A OR 4RK=A OR U*A U G*A G 4RK;
theta RK = invkinematic(A_OR 4RK, ss);

Y
A U 4LK=A U OR*A OR 4LK;
r U 4LK=A U 4LK(1:3, 4);

r 4LK G=[r 4LK G xU -r U 4LK(2) -r U 4LK(3)];

r UG=r UA4LK+r 4LK G;

4LK=A G U*A U OR*A OR OL* A OL 4LK;
A OL OR=inv(A OR OL);
A OL 4LK=A OL OR*A OR U*A U G* A G 4LK;
theta LK = invkinematic(A_OL 4LK, ss);

G U=inv(A U G);
G

end

gqmd = zeros(3, np);
gqmdd = zeros(3, np);

[nr, nc] = size(qm);

% test for accuracy
for i=1:nr
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for j=l:nc
if abs(qm(i,j)) < TOL
qm(i,) = 0;
end
end
end

%
% Tansformation Matrix of wheel frame, universal wheel frame, surface frame

R4RF SRF = [J;
R4RR_SRR = [];
RALF SLF = [J;

R4LR_SLR = [];

for p=1:np

A_U_OR = roty(qm(2,p)) * rotz(qm(3,p)) * rotx(qm(1,p));
A _OR _4RF] = Kinematic(q_RF(:,p)', d, a, alpha, beta SRF_zs(p), qm(3,p));
_OR_4RR] = Kinematic(q_RR(:,p)', d, a, alpha, beta SRR _zs(p), qm(3,p));

_OL 4LF] = Kinematic(q_LF(:,p)', d, a, alpha,-beta SLF zs(p),-qm(3,p));
_OL_4LR] = Kinematic(q_LR(:,p)', d, a, alpha,-beta_ SLR_zs(p),-qm(3,p));

OO

=A U OR* A OR 4RF;
=A U OR*A OR 4RR;

=A U OR*A OR OL*A OL_4LF;
=A UOR*A OR OL* A OL 4LR;

% Right Front

[alpha_l,alpha 2,alpha 3]=HT 2 RPY(A_U_4RF);

A WRF 4RF = roty(alpha 2)*rotz(alpha 3)*rotx(alpha_1); % Wheel Universal frame
A_WRF_SRF =roty(beta SRF ys(p)) * rotz(beta SRF_zs(p)); % Surface Frame
A 4RF WRF =A WRF 4RF';

A _4RF SRF=A 4RF WRF * A WRF_SRF;

R _4RF _SRF = A 4RF_SRF(1:3,1:3);

% Right Rear

[alpha l,alpha 2.,alpha 3]=HT 2 RPY(A_U 4RR);

A _WRR _4RR =roty(alpha 2)*rotz(alpha 3)*rotx(alpha 1); % Wheel Universal frame
A_WRR_SRR = roty(beta SRR_ys(p)) * rotz(beta_ SRR_zs(p)); % Surface Frame
A_4RR_WRR=A_WRR 4RR/

A 4RR SRR=A 4RR WRR * A' WRR_SRR;

R 4RR SRR =A 4RR SRR(1:3,1:3);

% Left Front

[alpha_l,alpha 2,alpha 3]=HT 2 RPY(A U 4LF);,

A WLF 4LF =roty(alpha 2)*rotz(alpha_3)*rotx(alpha 1); % Wheel Universal frame
A WLF SLF =roty(beta SLF ys(p)) * rotz(beta SLF zs(p)); % Surface Frame
A 4LF WLF=A WLF 4LF'

A 4LF SLF=A 4LF WLF * A WLF_SLF;

R 4LF SLF=A 4LF SLF(1:3,1:3);
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% Left Rear

[alpha I,alpha 2,alpha 3]=HT 2 RPY(A U 4LR);

A WLR 4LR =roty(alpha_2)*rotz(alpha 3)*rotx(alpha 1); % Wheel Universal frame
A WLR SLR =roty(beta SLR_ys(p)) * rotz(beta SLR zs(p)); % Surface Frame
A 4LR WLR=A WLR 4LR";

A 4LR SLR=A 4LR WLR * A_ WLR_SLR;

R 4LR_SLR=A 4LR_SLR(1:3,1:3);

R4RF SRF =[R4RF SRF R _4RF SRF];
R4RR_SRR = [R4RR_SRR R_4RR_SRR];
RALF SLF =[R4LF SLF R 4LF SLFJ;
R4LR_SLR =[R4LR_SLR R _4LR_SLR];

end

%
% compute the force and moment exerted on the base OoR
[Force, Moment, Normal Forces, towc, fc, fc Moment, NF_moment,...
Tow_CRight, Tow CFront, Tow CLeft, Tow CRear, ...
f gravity, f inertial, f gravity Moment, f inertial Moment] =...
rne_base9(dh_dyn, [qm; qmd; qmdd], ...
[q_RF; qd RF; qdd RF], [q RR; qd RR; qdd RR], ...
[q LF; qd LF;qdd LF],[q LR;qd LR;qdd LR], ...
Flat_surface, theta S zs, theta S ys,...
R4RF_SRF, R4RR_ SRR, R4LF SLF, R4LR_SLR, Touches);

% test for accuracy
for i=1:nr
for j=1:nc
if abs(Force(i,j)) < TOL
Force(i,j) = 0;
end

if abs(Moment(i,j)) < TOL
Moment(i,j) = 0;
end

if abs(Normal Forces(i,j)) < TOL
Normal_Forces(i,j) = 0;
end

if abs(fc(i,j)) < TOL
fe(i,j) = 0;
end

if abs(towc(i,j)) < TOL
towce(i,j) = 0;
end

if abs(fc_ Moment(i,j)) < TOL
fc Moment(i,j) = 0;
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end

if abs(NF_moment(i,j)) < TOL
NF_moment(i,j) = 0;
end

if abs(Tow_CRight(i,j)) < TOL
Tow_CRight(i,j) = 0;
end

if abs(Tow_CFront(i,j)) < TOL
Tow_CFront(i,j) = 0;
end

if abs(Tow_CLeft(i,j)) < TOL
Tow_CLeft(i,j) = 0;
end

if abs(Tow_CRear(i,j)) < TOL
Tow_CRear(i,j) = 0;
end

if abs(f_gravity(i,j)) < TOL
f gravity(i,j) = 0;
end

if abs(f_inertial(i,j)) < TOL
f inertial(i,j) = 0;
end

if abs(f_gravity Moment(i,j)) < TOL
f gravity Moment(i,j) = 0;
end

if abs(f_inertial Moment(i,j)) < TOL
f inertial Moment(i,j) = 0,
end

end
end

Momentt = Moment;

Tow_CRight = Tow_CRight(2,:);
Tow_CFront = Tow_CFront(3,:);
Tow CLeft = Tow_CLeft(2,:);
Tow_CRear = Tow_CRear(3,:);
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Rne_base9.m

function [Force, Moment, Normal Forces, Towc, Fc, Fc Moment, NF_moment,...
Tow_Critical Right, Tow_Critical Front, Tow_Critical Left, Tow_Critical Rear,...
F_gravity, F_inertial, F_gravity Moment, F_inertial Moment] = ...
rne(dh_dyn, al, a2, a3, a4, a5, a6, a7, a8, a9, al0, all, al2, al3)

n =numrows(dh _dyn); % number of links in one manipulator
np =numcols(a2) % number of time samples

Q0 =al(1:3,);
Q0d =al(4:6,);
Q0dd =al(7:9,);

Q RF =a2(1:4,);
Qd_RF =a2(5:8,:);
Qdd_RF =a2(9:12,:);

Q RR =a3(1:4,);
Qd_RR =a3(5:8,:);
Qdd_RR =a3(9:12,:);

Q LF =a4(l1:4,),
Qd_LF =a4(5:8,:);
Qdd_LF =a4(9:12,:);

Q LR =a5(1:4,);
Qd_LR =a5(5:8,));
Qdd LR =a5(9:12,);

Flat_surface = a6;

theta S zu=a7,
theta S yu=ag8;

R_Right side =[a9; al0];
R _Left side =[all;al2];

Touching = al3;

% Initial Conditions
radius = dh_dyn(5,3);

%g = 9.81; %acceleration gravity on earth surface (m/s"2).
g = 3.63; %acceleration gravity on Mars surface (m/s"2).

V = zeros(3, np);
Vd = zeros(3, np);

Vp = zeros(4, np);
Vpd = zeros(4, np);



for p=1:np,

Vp(.,p) =rotz(Q0(2,p))*rotz(Q0(3,p))*rotz(Q0(1,p))*...
[ 0; (radius*Qd_RF(4,p) - radius*Qd_LF(4,p))/2; 0; 1];
Vpd(:,p) = rotz(Q0(2,p))*rotz(Q0(3,p)) *rotz(QO(1,p))*...
[ 0; (radius*Qdd_RF(4,p) - radius*Qdd_LF(4,p))/2; 0; 1];
end

for p=1:np,

V(,p) =[0; 0; 0]+ Vp(1:3,p);
Vd(:,p) =[-g; 0; 0]+ Vpd(1:3,p);
end

%  w=zeros(3,1);
% wd = zeros(3,1);
%

m = dh_dyn(:,6); % column vector of links' masses
mass = m(1) +2*m(2) + 2*m(3) + 4*m(4) + 4*m(5); % System total mass

rc = dh_dyn(:,7:9)'; % matrix of COM data; row per link

Im =[];
for j=1:n,

I=[dh_dyn(j,10) dh_dyn(j,13) dh_dyn(j,15); ...
dh_dyn(j,13) dh_dyn(j,11) dh_dyn(j,14); ...
dh_dyn(j,15) dh_dyn(j,14) dh_dyn(j,12)];

Im=[ImI];

end

Force_ Moment NOM =[];

f NOM =[];
tow_NOM = [];

A NOM =[[;
R NOM =[];
pstar NOM = [];

for NOM=1:4,

if NOM == 1,
Q =Q_RF;
Qd =Qd_RF;
Qdd = Qdd_RF;
sign=1;
elseif NOM == 2,
Q =Q_RR;
Qd =Qd _RR;
Qdd =Qdd RR;
sign=1;
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elseif NOM == 3,
Q =Q_LF;
Qd =Qd_LF;
Qdd=Qdd _LF;
sign =-1;
elseif NOM == 4,
Q =Q_LR;
Qd =Qd LR;
Qdd =Qdd LR;
sign =-1;
end

fp=[L
tow_p =[];

A p=[];
R p=[];
pstar_p =[];

for p=1:np,

q0 =QO(:,p);
q0d = QOd(:,p);
q0dd= Q0dd(:,p);

q =QC.p);
qd = Qd(:,p);
qdd = Qdd(:,p);

v =V(,p);
vd = Vd(:,p);

w =q0d;
wd = q0dd;

fm = [];
towm = [];

pstarm = [];
Am = [];
Rm = [];

theta = q;
d =dh dyn(2:n,2);

a =dh_dyn(2:n,3);

alpha = dh_dyn(2:n,4);

%

A
R

_U_OR = roty(q0(2)) * rotz(q0(3)) * rotx(q0(1));
U OR=A U 0R(1:3,1:3);
R OR 0L=[100;0-10;00-17;

260



A OR OL=[1000;0-100;00-10;0001];

if (NOM == 1 || NOM ==2)
Rm=[RmR_U OR];
Am=[Am A_U OR];

elseif (NOM == 3 || NOM ==4)
R UOL=R U OR*R OR OL;
A UOL=A UOR*A OR OL;
Rm=[RmR U OL];
Am=[Am A _U OL];

end

p_U_0 =[0; 0; 0];
pstarm = [pstarm p_U_0];
%

qd=[q0d [0000; ...
0000;...
qd']];

qdd=[q0dd [0 0 0 0; ...
0000;...
qdd']];
%
% theta 4 manipulated in contact point of wheel with ground
theta(4) = -theta(1) - theta(3) + sign*(theta_ S zu(NOM, p) - q0(3)) ;
theta(3) = theta(3) + pi;

for j=1:n-1,

A = DHtransformation(theta(j), d(j), a(j), alpha(j));
pstar = [a(j); d(j)*sin(alpha(j)); d(j)*cos(alpha(j))];
Am=[Am A];
R =A(1:3,1:3);

Rm=[RmR];

pstarm = [pstarm pstar];
end

%

%
% the forward recursion
%

for j=1:n,
R =Rm(:,3%j-2:3%));

pstar = pstarm(:,j);
I=1Im(:,3%}-2:3%));
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wd = R*(wd + qdd(:,j) + cross(w,qd(:.j)));
w =R*(w + qd(:,)));

vd = cross(wd,pstar) + cross(w, cross(w,pstar)) + R*vd;

vd_c = cross(wd,rc(:,j)) + cross(w,cross(w,re(:,j))) + vd;

f=m()*vd c;
tow = I*wd + cross(w,[*w);
fm = [fm {];
towm = [towm tow];
end
f p=[f_p fn];

tow_p = [tow_p towm];

R p=[R _pRm];

A p=[A_pAm];

pstar_p = [pstar_p pstarm];

end

pstar NOM = [pstar NOM; pstar p];
A NOM =[A NOM; A pl;

R NOM =[R NOM;R pl;

f NOM =[f NOM; f pl;

tow NOM = [tow_NOM; tow_p];

end
f NOM,;

% Normal Forces

Fext SRF_SRF =[];
Fext SRR_SRR =[];
Fext SLF SLF =[];
Fext SLR SLR =[];

towc_sys = []; fc_sys = []; fc Moment _sys=[]; NF_moment_sys = [];
tow_CRight sys = []; tow_CFront_sys = []; tow_CLeft_sys =[]; tow_CRear_sys =[];
f gravity sys=[]; f _inertial sys={[];

f gravity Moment sys = []; f inertial Moment sys = [];

for p=1:np,

%meu_s = 0.6;
%meu_k =0.15;

qO = Qo(ap)a
nc =4,
Touch = Touching(:,p);
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[Fn_SRF, Fn_ SRR, Fn_SLF, Fn_SLR, towc, fc, fc Moment, NF_moment,...
tow_Critical Right, tow_Critical Front, tow_Critical _Left, tow_Critical Rear,...
f gravity, f inertial, f gravity Moment, f inertial Moment] =...
Inertial1 1(f NOM(:,5*p-4:5%p), tow_NOM(:,5%p-4:5%p),...
R _NOM(;,15%p-14:15%p), A NOM(:,20*p-19:20*p),...
pstarm, dh_dyn, theta S zu(:,p), theta S yu(:,p),...
Touch, m, q0(2),q0(3));

Ff SRF =0;%meu_s * Fn_SRF; %
Ff SRR =0;%meu_s * Fn_SRR; % Static frictional force
Ff SLF =0;%meu s * Fn SLF; %
Ff SLR =0;%meu_s * Fn_SLR; %

%Ff SRF =meu k * Fn_SRF; %
%Ff SRR =meu k * Fn_SRR; % Dynamic frictional force
%Ff SLF =meu k * Fn_SLF; %
%Ff SLR =meu _k * Fn SLR; %

% Generalized ground input forces and moments

FSRF SRF =[Fn SRF -Ff SRF 0]} %

FSRR SRR =[Fn_ SRR -Ff SRR 0]} % External resultant force
FSLF _SLF=[Fn SLF -Ff SLF 0]} %

FSLR SLR=[Fn SLR -Ff SLR 0]} %

TSRF SRF=[0 0 O0]; %

TSRR SRR=[0 0 0]} % External resultant moment
TSLF_SLF=[0 0 0]} %

TSLR SLR=[0 0 O]} %

Fext_SRF_SRF = [Fext SRF_SRF [FSRF_SRF; TSRF_SRF]];
Fext SRR SRR = [Fext SRR_SRR [FSRR_SRR; TSRR_SRR]];
Fext_SLF_SLF = [Fext SLF SLF [FSLF_SLF; TSLF_SLF]];
Fext SLR_SLR = [Fext SLR_SLR [FSLR_SLR; TSLR_SLR]J;

towc_sys = [towc_sys towc];

fc_sys =[fc_sys fc];

fc Moment sys = [fc Moment_sys fc Moment];
NF_moment sys = [NF_moment sys NF_moment];

tow_CRight sys =[tow_CRight sys tow_Critical Right];
tow_CFront_sys = [tow_CFront sys tow_Critical Front];
tow_CLeft sys = [tow_CLeft sys tow Critical Left];
tow_CRear _sys =[tow CRear sys tow_Critical Rear];

f gravity sys =[f gravity sys f gravity];

f inertial_sys = [f inertial _sys f inertial];

f gravity Moment _sys = [f gravity Moment sys f gravity Moment];
f inertial Moment sys = [f inertial Moment sys f inertial Moment];
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end

Towc = towc_sys;

Fc=fc sys;

Fc_Moment = fc_ Moment_sys;
NF_moment = NF_moment_sys;

Tow_Critical Right =tow_CRight_sys;
Tow_Critical Front =tow_ CFront_ sys;
Tow_Critical Left =tow_CLeft sys;
Tow_Critical Rear =tow_CRear_sys;

F_gravity =f gravity sys;
F_inertial = f inertial sys;
F_gravity Moment =f gravity Moment_sys;
F inertial Moment ={ inertial Moment sys;

%

Force Moment nps = [];
fors=1:2 % Right/Left side

ifs==1,
pstar_s = pstar NOM(1:6,:);
R s =R _NOM(1:6,:);
fs =fNOM(:6,);
tow_s =tow NOM(1:6,:);
Fext s =[Fext SRF SRF; Fext SRR SRR];
R s Surface =R_Right side;

elseif s == 2,
pstar_s = pstar NOM(7:12,:);
R s =R NOM(7:12,);
fs =fNOM(7:12,);
tow_s =tow NOM(7:12,);
Fext s =[Fext SLF SLF; Fext SLR SLR];
R s Surface =R Left side;
end

Force Moment NOM = [];
for NOM = 1:2, % Front/Rear Leg

if NOM == 1,
pstar = pstar_s(1:3,:);
Rot =R _s(1:3,);
f =1 s(1:3,);
tow =tow_s(1:3,:);
Fext =Fext s(1:6,:);



R _Surface =R_s_Surface(1:3,:);

elseif NOM ==2,
pstar = pstar_s(4:6,:);
Rot =R _s(4:6,);
f =1 s(4:6,:);
tow =tow_s(4:6,:);
Fext =Fext s(7:12,:);
R _Surface =R _s_Surface(4:6,:);

end
Force_ Moment_np = [];
for p=1:np,
R 4 S=R Surface(:,3*p-2:3*p);
rm = pstar(:,5*p-4:5%p);
Rm =Rot(:,15%p-14:15%p);
fm = f(:,5%p-4:5%p);
towm = tow(:,5*p-4:5%*p);
F =Fext(1:3,p); % force/moments at end of end-effector

T =Fext(4:6,p);

Moment_n =[];
Force n =];

for j =n:-1:3
r=rm(:,j);
ifj==n,
R=R 4 §;
else
R =Rm(:,3*j+1:3%j+3);
end

ifG=5) 11 G=4) | ((=3)&&NOM=1))

T = R*(T + cross(R"r1,F)) + cross(r+rc(:,j),fm(:,j)) + towm(:,j);
F = R*F + fm(:,));

elseif (j == 3)&&(NOM == 2),

T =R*(T + cross(R"*r,F));
F = R*F;

end

Moment_n=[Moment n T]J;
Force n =[Force n FJ;
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end

Force Moment _np = [Force. Moment np [Force n; Moment n]];

end

Force Moment NOM = [Force Moment NOM; Force Moment np];

end
% Conjunctional joint
for p=1:np,
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Force Moment NOM(1:6,3*p) = Force. Moment NOM(1:6,3*p) + Force Moment NOM(7:12,3*p);

end
%Force Moment NOM
Force Moment NOM_s = Force. Moment NOM(1:6,:);

%

pstar = pstar_s(1:3,:);
Rot =R s(1:3,:);

f =1 s(1:3,);
tow =tow_s(1:3,:);

Moment ns = [];
Force ns =[];

for p= L:np,

Rm =Rot(:,15%p-14:15%p);
rm = pstar(:,5*p-4:5%p);
fm = f(:,5%p-4:5%p);

towm = tow(:,5*p-4:5%p);

F =Force Moment NOM_s(1:3,3*p);
T = Force Moment NOM_s(4:6,3*p);

=2
r=rm(.,j);

R =Rm(:,3%j+1:3%j+3);

T = R*(T + cross(R"*1,F)) + cross(r+rc(:,j),fm(:,j)) + towm(:,j);
F =R*F + fm(:,j);

Moment_ns = [Moment_ns TJ;
Force ns =[Force ns FJ;

end

Force Moment nps = [Force. Moment nps; [Force ns; Moment ns]];



end

FIR 1R =Force Moment nps(1:3,:);
T1R IR =Force Moment nps(4:6,:);

FIL 1L =Force Moment nps(7:9,:);
TI1L 1L =Force Moment nps(10:12,:);

fOR OR =f NOM(1:3,);
towOR _OR =tow NOM(1:3,:);

ROR OL=[100;0-10;00-1T;
Rot R =R NOM(1:3,:);
Rot L =R NOM(7:9,:);
pstar R = pstar NOM(1:3,:);
Moment _ns = [];

Force ns =[],

forp=1:np,

Rm R =Rot R(:;,15%p-14:15%p);
Rm L =Rot L(;,15%*p-14:15%p);

rm = pstar R(:,5%p-4:5%p);
fm =fOR OR(:,5*p-4:5%p);
towm = towOR_OR(:,5%p-4:5%p);

TR =TI1R_IR(:,p);
FR =FI1R_IR(:,p);

TL =TIL 1L(,p);
FL=FIL 1L(,p);

=L
r=rm(.,j);

R_R =Rm_R(:,3*j+1:3*j+3);
R L=Rm L(:,3*+1:3%j+3);

T =R_R*(TR + cross(R_R'*r,FR)) + cross(r+rc(:,j),fm(:,j)) + towm(:,j)+...
ROR OL*R _L*(TL + cross(R_L"*r,FL));
F =R _R*FR + fim(:,j) + ROR_OL * R_L*FL;

Moment_ns = [Moment ns TJ;
Force ns =[Force ns FJ;

end

Force Moment np0 = [Force ns; Moment ns];
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for p=1:np,
R U 0 =R _NOM(1:3,15%p-14:15%p-12);

F(1:3,p) =R _U_0 * Force. Moment_np0(1:3, p);
T(1:3,p) =R _U 0 * Force Moment np0(4:6, p);
end

Force =F;
Moment =T;

Normal_Forces = [Fext SRF_SRF(1,:); Fext SRR_SRR(1,:);...
Fext SLF SLF(1,:); Fext SLR SLR(1,:)];
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Inertialll

function [FnSRF, FnSRR, FnSLF, FnSLR, towc, fc, fc Moment, Normal Forces moments,...

tow_Critical Right, tow_Critical Front, tow_Critical Left, tow_Critical Rear,...
f gravity, f inertial, f gravity Moment, f inertial Moment] =...
Inertial 1 1(f, tow, R, A, pstarm, dh_dyn, theta S zu, theta_S yu, Touch, m, Roll, Pitch)

touchRF = Touch(1);
touchRR = Touch(2);
touchLF = Touch(3);
touchLR = Touch(4);

m0 = m(1); ml =m(2); m2 =m(3); m3 = m(4); m4 = m(5);,
Mass = m0 + 2*(m1 + m2) + 4*(m3 + m4);

TOL = 0.00001; % tolerance value

g=3.63;
meu=0;

fOR =1(1:3,1);
fIR =1(1:3,2);
f2R =1(1:3,3);
f3RF = 1{(1:3,4);
fARF = (1:3,5);
f3RR = 1(4:6,4);
f4ARR = f(4:6,5);

fOL =1(7:9,1); fIL =1(7:9,2); 2L =1(7:9,3);
f3LF = (7:9,4); fALF =1(7:9,5);
f3LR = £(10:12,4); fALR = £(10:12,5);

towOR = tow(1:3,1); towlR =tow(1:3,2); tow2R = tow(1:3,3);
tow3RF = tow(1:3,4); tow4RF = tow(1:3,5);
tow3RR = tow(4:6,4); towd4RR = tow(4:6,5);

towOL =tow(7:9,1); towlL =tow(7:9,2); tow2L = tow(7:9,3);



tow3LF = tow(7:9,4); tow4LF = tow(7:9,5);
tow3LR = tow(10:12,4); towd4LR = tow(10:12,5);

tow4RF;
tow4RR;
tow4LF;
tow4LR;

r0 = pstarm(:, 1);
rl = pstarm(:, 2);
r2 = pstarm(:, 3);
13 = pstarm(:, 4);
r4 = pstarm(:, 5);

rc = dh_dyn(:,7:9)';

rc0 = re(:,1);
rcl =rc(:,2);
rc2 = rc(:,3);
re3 = rc(:,4);
rcd =rc(:,5);

AU _4RF = A(1:4,1:4) * A(1:4,5:8) * A(1:4,9:12) * A(1:4,13:16) *A(1:4,17:20);
AU 3RF = A(1:4,1:4) * A(1:4,5:8) * A(1:4,9:12) * A(1:4,13:16);

AU 2R = A(1:4,1:4) * A(1:4,5:8) * A(1:4,9:12);

AU IR = A(1:4,1:4) * A(1:4,5:8);

AU OR = A(1:4,1:4);

rU_4RF = AU _4RF(1:3,4);
rU_3RF = AU _3RF(1:3,4);
rU 2R =AU 2R(1:3,4);
rU IR =AU _IR(1:3,4);
rU_OR = AU_OR(1:3,4);

rcU 4RF =r1U 3RF; % - AU 4RF(1:3,1:3)*rc4 ;
rcU 3RF=rU 2R - AU 3RF(1:3,1:3)*rc3;

rcU 2R =1U 1R - AU 2R(1:3,1:3)*rc2;

rcU IR =rU OR - AU 1R(1:3,1:3)*rcl;
rcU_OR =10;

AU 4RR = A(5:8,1:4) * A(5:8,5:8) * A(5:8,9:12) * A(5:8,13:16) *A(5:8,17:20);
AU 3RR = A(5:8,1:4) * A(5:8,5:8) * A(5:8,9:12) * A(5:8,13:16);

rU 4RR = AU 4RR(1:3,4);
rU_3RR = AU_3RR(1:3,4);

rcU 4RR =r1U 3RR;% - AU 4RR(1:3,1:3)*rc4;
rcU 3RR=rU 2R - AU 3RR(1:3,1:3)*rc3;
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AU _4LF = A(9:12,1:4) * A(9:12,5:8) * A(9:12,9:12) * A(9:12,13:16) *A(9:12,17:20);
AU 3LF = A(9:12,1:4) * A(9:12,5:8) * A(9:12,9:12) * A(9:12,13:16);

AU 2L = A(9:12,1:4) * A(9:12,5:8) * A(9:12,9:12);

AU IL = A(9:12,1:4) * A(9:12,5:8);

AU OL = A(9:12,1:4);

rU 4LF = AU 4LF(1:3,4);
rU_3LF = AU_3LF(1:3,4);
rU 2L =AU 21(1:3,4);
rU_1L = AU_1L(1:3,4);
rU OL = AU 0L(1:3,4);

rcU_4LF =rU 3LF;% - AU _4LF(1:3,1:3)*rc4;
rcU 3LF =rU 2L - AU 3LF(1:3,1:3)*rc3;
rcU 2L =rU_IL - AU 2L(1:3,1:3)*rc2;
rcU_1L =rU OR - AU _1L(1:3,1:3)*rcl;

AU 4LR = A(13:16,1:4) * A(13:16,5:8) * A(13:16,9:12) * A(13:16,13:16) * A(13:16,17:20);
AU 3LR = A(13:16,1:4) * A(13:16,5:8) * A(13:16,9:12) * A(13:16,13:16);

rU_4LR = AU_4LR(1:3,4);
rU_3LR = AU_3LR(1:3,4);

rcU_4LR =rU _3LR; % - AU _4LR(1:3,1:3)*rc4;
rcU 3LR=rU 2L - AU 3LR(1:3,1:3)*rc3;

%
% Right Front
beta SRF zu=theta S zu(1);
beta SRF yu=theta S yu(l);
[alpha I,alpha 2,alpha 3]=HT 2 RPY(AU_4RF);
AWRF 4RF =roty(alpha 2)*rotz(alpha_3)*rotx(alpha 1); % Wheel Universal frame
AWRF_SRF =roty(beta SRF_yu) * rotz(beta SRF zu); % Surface Frame
A4RF_WRF = AWRF 4RF";
A4RF_SRF = A4RF_WRF * AWRF_SRF,
AU SRF =AU 4RF * A4RF_SRF;

% Right Rear
beta SRR zu =theta S zu(2);
beta SRR yu=theta S yu(2);
[alpha I,alpha 2,alpha 3]=HT 2 RPY(AU 4RR);
AWRR 4RR =roty(alpha_2)*rotz(alpha_3)*rotx(alpha 1); % Wheel Universal frame
AWRR SRR =roty(beta SRR yu) * rotz(beta SRR _zu); % Surface Frame
A4RR_WRR = AWRR 4RR';
A4RR SRR =A4RR WRR * AWRR_SRR;
AU SRR =AU 4RR * A4RR SRR;

% Left Front
beta SLF zu =theta S zu(3);
beta SLF yu=theta S yu(3);
[alpha I,alpha 2,alpha 3]=HT 2 RPY(AU 4LF);
AWLF A4LF = roty(alpha 2)*rotz(alpha 3)*rotx(alpha 1); % Wheel Universal frame
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AWLF_SLF =roty(beta SLF yu) * rotz(beta SLF zu); % Surface Frame
A4LF WLF = AWLF 4LF";

A4LF SLF = A4LF WLF * AWLF SLF;

AU SLF =AU 4LF * A4LF SLF;

% Left Rear
beta SLR zu=theta S zu(4);
beta SLR_yu =theta S yu(4);
[alpha l,alpha 2,alpha 3]=HT 2 RPY(AU 4LR);
AWLR 4LR =roty(alpha 2)*rotz(alpha_3)*rotx(alpha 1); % Wheel Universal frame
AWLR_SLR =roty(beta SLR yu) * rotz(beta SLR zu); % Surface Frame
A4LR WLR =AWLR 4LR};
A4LR SLR=A4LR WLR * AWLR_SLR;
AU SLR =AU 4LR * A4LR SLR;

%

inv(AU_OR(1:3,1:3))*AU_SRF(1:3,1:3);
inv(AU OR(1:3,1:3))*AU_SRR(1:3,1:3);
inv(AU_OR(1:3,1:3))*AU_SLF(1:3,1:3);
inv(AU OR(1:3,1:3))*AU_SLR(1:3,1:3);

AU _SRF(1:3,1:3);
AU_SRR(1:3,1:3);
AU _SLF(1:3,1:3);
AU _SLR(1:3,1:3);

H1 =AU _SRF(1:3,1:3)*[1 -meu 0]’
H2 = AU SRR(1:3,1:3)*[1 -meu 0]';
H3 = AU _SLF(1:3,1:3)*[1 -meu 0]
H4 =AU _SLR(1:3,1:3)*[1 -meu 0]

System_Force OR =inv(AU_OR(1:3,1:3))*...
(AU _4RF(1:3,1:3)*f4RR + AU _3RF(1:3,1:3)*f3RF + AU _4RR(1:3,1:3)*f4RR +

AU 3RR(1:3,1:3)*f3RR + ...
AU 2R(1:3,1:3)*f2R + AU_1R(1:3,1:3)*fIR + AU_4LF(1:3,1:3)*f4LF + AU _3LF(1:3,1:3)*f3LF + ...
AU 4LR(1:3,1:3)*f4LR + AU 3LR(1:3,1:3)*f3LR + AU _2L(1:3,1:3)*2L + AU_1L(1:3,1:3)*fIL + ...
AU 0R(1:3,1:3)*f0OR);

System Force U= AU 4RF(1:3,1:3)*f4RR + AU_3RF(1:3,1:3)*f3RF + AU 4RR(1:3,1:3)*f4RR +

AU 3RR(1:3,1:3)*f3RR + ...
AU 2R(1:3,1:3)*f2R + AU_1R(1:3,1:3)*fIR + AU 4LF(1:3,1:3)*f4LF + AU 3LF(1:3,1:3)*f3LF + ...
AU 4LR(1:3,1:3)*f4LR + AU 3LR(1:3,1:3)*f3LR + AU _2L(1:3,1:3)*2L + AU_1L(1:3,1:3)*fIL + ...
AU OR(1:3,1:3)*f0R;

Al =touchRF * cross(rU_4RF, AU _SRF(1:3,1:3)*[1 -meu 0]');
A2 = touchRR * cross(rU_4RR, AU SRR(1:3,1:3)*[1 -meu 0]";
A3 = touchLF * cross(rU_4LF, AU SLF(1:3,1:3)*[1 -meu 0]');

A4 = touchLR * cross(rU 4LR, AU SLR(1:3,1:3)*[1 -meu 0]";

M U= cross(rcU 4RF, AU 4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU 3RF(1:3,1:3)*f3RF)+...
cross(rcU_4RR, AU 4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU 3RR(1:3,1:3)*f3RR)+...



cross(rcU 2R, AU 2R(1:3,1:3)*f2R) + cross(rcU_1R, AU_1R(1:3,1:3)*fIR)+...
cross(rcU_OR, AU O0R(1:3,1:3)*fOR) + cross(rcU_1L, AU 1L(1:3,1:3)*fl1L)+...

cross(rcU 2L, AU 2L(1:3,1:3)*f2L) + cross(rcU_3LF, AU 3LF(1:3,1:3)*f3LF)+...
cross(rcU_4LF, AU 4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU _3LR(1:3,1:3)*f3LR)+...

cross(rcU_4LR, AU 4LR(1:3,1:3)*f4LR) + ...

AU 4RF(1:3,1:3)*tow4RF + AU 3RF(1:3,1:3)*tow3RF + AU_4RR(1:3,1:3)*tow4RR +

AU 3RR(1:3,1:3)*tow3RR+...

AU 4LF(1:3,1:3)*tow4LF + AU 3LF(1:3,1:3)*tow3LF + AU _4LR(1:3,1:3)*tow4LR +

AU 3LR(1:3,1:3)*tow3LR ...

AU 2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*towlR + AU _2L(1:3,1:3)*tow2L +

AU 1L(1:3,1:3)*towlL +...
AU OR(1:3,1:3)*tow0R,;

rU 4RR - U _4RF;
rU _4LF - rU_4RF;
rU_4LR - rU_4RF;

B1 =touchRR * cross(rU_4RR - rU 4RF, AU SRR(1:3,1:3)*[1 -meu 0]");
B2 =touchLF * cross(rtU_4LF - rU _4RF, AU SLF(1:3,1:3)*[1 -meu 0]');
B3 =touchLR * cross(rU_4LR - rU_4RF, AU_SLR(1:3,1:3)*[1 -meu 0]");

M1 = cross(rcU_4RF - rU _4RF, AU 4RF(1:3,1:3)*f4RF) + cross(rcU_3RF - rU_4RF,

AU 3RF(1:3,1:3)*f3RF)+...

cross(rcU_4RR - rU_4RF, AU 4RR(1:3,1:3)*f4RR) + cross(rcU_3RR - rU 4RF,
AU 3RR(1:3,1:3)*f3RR)+...

cross(rcU_2R -rU 4RF, AU 2R(1:3,1:3)*f2R) + cross(rcU_IR -r1U 4RF,
AU _1R(1:3,1:3)*f1R)+...

cross(rcU_OR -rU_4RF, AU O0R(1:3,1:3)*fOR) + cross(rcU_1L -rU_4RF,
AU _1L(1:3,1:3)*f1L)+...

cross(rcU 2L -rU 4RF, AU 21(1:3,1:3)*f2L) + cross(rcU_3LF - rU_4RF,
AU 3LF(1:3,1:3)*3LF)+...

cross(rcU_4LF - rU 4RF, AU 4LF(1:3,1:3)*f4LF) + cross(rcU_3LR - rU_4RF,
AU 3LR(1:3,1:3)*f3LR)+...

cross(rcU_4LR -rU _4RF, AU 4LR(1:3,1:3)*f4LR) + ...

AU _4RF(1:3,1:3)*tow4RF + AU 3RF(1:3,1:3)*tow3RF + AU 4RR(1:3,1:3)*tow4RR +

AU 3RR(1:3,1:3)*tow3RR+...

AU 4LF(1:3,1:3)*tow4LF + AU 3LF(1:3,1:3)*tow3LF + AU_4LR(1:3,1:3)*tow4LR +

AU 3LR(1:3,1:3)*tow3LR+...

AU 2R(1:3,1:3)*tow2R + AU_IR(1:3,1:3)*towlR + AU _2L(1:3,1:3)*tow2L +

AU 1L(1:3,1:3)*towlL +...
AU _OR(1:3,1:3)*tow0R,;

C1 = touchRF * cross(rU_4RF - rU 4RR, AU _SRF(1:3,1:3)*[1 -meu 0]');
C2 =touchLF * cross(rtU_4LF - rU 4RR, AU SLF(1:3,1:3)*[1 -meu 0]');
C3 =touchLR * cross(rU 4LR -rU 4RR, AU SLR(1:3,1:3)*[1 -meu 0]");

M2 = cross(rcU_4RR - rU_4RR, AU 4RR(1:3,1:3)*f4RR) + cross(rcU_3RR - rU_4RR,
AU 3RR(1:3,1:3)*f3RR)+...
cross(rcU_4RF - rU 4RR, AU 4RF(1:3,1:3)*f4RF) + cross(rcU_3RF - rU_4RR,
AU 3RR(1:3,1:3)*f3RR)+...
cross(rcU 2R -rU _4RR, AU 2R(1:3,1:3)*f2R) + cross(rcU_1R -rU 4RR,
AU _1R(1:3,1:3)*fIR)+...
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cross(rcU_OR -rU_4RR, AU OR(1:3,1:3)*f0OR) + cross(rcU_IL -rU _4RR,
AU _1L(1:3,1:3)*f1L)+...

cross(rcU 2L -1U 4RR, AU 2I(1:3,1:3)*f2L) + cross(rcU 3LF - rU 4RR,
AU 3LF(1:3,1:3)*f3LF)+...

cross(rcU_4LF -rU _4RR, AU 4LF(1:3,1:3)*f4LF) + cross(rcU_3LR - rU_4RR,
AU 3LR(1:3,1:3)*f3LR)+...

cross(rcU_4LR -rU _4RR, AU 4LR(1:3,1:3)*f4LR) +...

AU _4RF(1:3,1:3)*tow4RF + AU 3RF(1:3,1:3)*tow3RF + AU 4RR(1:3,1:3)*tow4RR +
AU 3RR(1:3,1:3)*tow3RR+...

AU 4LF(1:3,1:3)*tow4LF + AU 3LF(1:3,1:3)*tow3LF + AU 4LR(1:3,1:3)*tow4LR +
AU 3LR(1:3,1:3)*tow3LR+...

AU 2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*towlR + AU 2L(1:3,1:3)*tow2L +
AU _1L(1:3,1:3)*towl1L +...

AU O0R(1:3,1:3)*towOR;

D1 = touchRF * cross(rU_4RF - rU 4LF, AU _SRF(1:3,1:3)*[1 -meu 0]');
D2 = touchRR * cross(rU_4RR - rU 4LF, AU _SRR(1:3,1:3)*[1 -meu 0]");
D3 = touchLR * cross(rU_4LR - rU 4LF, AU _SLR(1:3,1:3)*[1 -meu 0]");

M3 = cross(rcU_4RR -rU 4LF, AU 4RR(1:3,1:3)*f4RR) + cross(rcU 3RR - rU 4LF,
AU 3RR(1:3,1:3)*f3RR)+...
cross(rcU_4RF - rU 4LF, AU 4RF(1:3,1:3)*f4RF) + cross(rcU_3RF - rU _4LF,
AU 3RR(1:3,1:3)*f3RR)+...
cross(rcU 2R -rU _4LF, AU 2R(1:3,1:3)*f2R) + cross(rcU_IR -rU_4LF,
AU _1R(1:3,1:3)*f1R)+...
cross(rcU_OR -rU_4LF, AU 0R(1:3,1:3)*f0OR) + cross(rcU_IL -rU_4LF,
AU 1L(1:3,1:3)*f1L)+...
cross(rcU 2L -rU 4LF, AU 2L(1:3,1:3)*f2L) + cross(rcU 3LF -rU 4LF,
AU 3LF(1:3,1:3)*3LF)+...
cross(rcU_4LF -rU 4LF, AU 4LF(1:3,1:3)*f4LF) + cross(rcU_3LR - rU_4LF,
AU 3LR(1:3,1:3)*3LR)+...
cross(rcU_4LR -rU_4LF, AU 4LR(1:3,1:3)*f4LR) + ...
AU 4RF(1:3,1:3)*tow4RF + AU 3RF(1:3,1:3)*tow3RF + AU 4RR(1:3,1:3)*tow4RR +
AU 3RR(1:3,1:3)*tow3RR+ ...
AU _4LF(1:3,1:3)*tow4LF + AU 3LF(1:3,1:3)*tow3LF + AU 4LR(1:3,1:3)*tow4LR +
AU 3LR(1:3,1:3)*tow3LR+...
AU 2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*towlR + AU 2L(1:3,1:3)*tow2L +
AU 11L(1:3,1:3)*tow1L +...
AU O0R(1:3,1:3)*towOR;

El = touchRF * cross(rU_4RF - rU_4LR, AU_SRF(1:3,1:3)*[1 -meu 0]');
E2 =touchRR * cross(rU_4RR - rU 4LR, AU SRR(1:3,1:3)*[1 -meu 0]");
E3 =touchLF * cross(rU_4LF - rU_4LR, AU _SLF(1:3,1:3)*[1 -meu 0]');

M4 = cross(rcU_4RR - rU_4LR, AU 4RR(1:3,1:3)*f4RR) + cross(rcU_3RR -rU 4LR,
AU 3RR(1:3,1:3)*f3RR)+...
cross(rcU_4RF - rU 4LR, AU 4RF(1:3,1:3)*f4RF) + cross(rcU_3RF - rU 4LR,
AU 3RR(1:3,1:3)*f3RR)+...
cross(rcU 2R -rU 4LR, AU 2R(1:3,1:3)*f2R) + cross(rcU_IR -rU 4LR,
AU _1R(1:3,1:3)*fIR)+...
cross(rcU_OR -rU_4LR, AU O0R(1:3,1:3)*fOR) + cross(rcU_1L -rU _4LR,
AU _1L(1:3,1:3)*f1L)+...
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cross(rcU 2L -rU 4LR, AU 2L(1:3,1:3)*f2L) + cross(rcU_3LF -rU 4LR,
AU 3LF(1:3,1:3)*f3LF)+...

cross(rcU_4LF -rU 4LR, AU 4LF(1:3,1:3)*f4LF) + cross(rcU_3LR - rU 4LR,
AU 3LR(1:3,1:3)*f3LR)+...

cross(rcU_4LR -rU 4LR, AU 4LR(1:3,1:3)*f4LR) +...

AU 4RF(1:3,1:3)*tow4RF + AU 3RF(1:3,1:3)*tow3RF + AU 4RR(1:3,1:3)*tow4RR +
AU 3RR(1:3,1:3)*tow3RR+...

AU 4LF(1:3,1:3)*tow4LF + AU 3LF(1:3,1:3)*tow3LF + AU 4LR(1:3,1:3)*tow4LR +
AU 3LR(1:3,1:3)*tow3LR+...

AU 2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*towlR + AU 2L(1:3,1:3)*tow2L +
AU _1L(1:3,1:3)*towl1L +...

AU OR(1:3,1:3)*tow0R,;

%
% Right Legs & Left Legs are in contact with ground
%

if (touchRF == 1 && touchRR == 1)&&(touchLF == 1 && touchLR == 1)
if (Roll ~= 0 && Pitch == 0)

Fn SRF =-M3(2)/(D1(2)+D2(2));
Fn SRR =Fn_SRF;
Fn SLF =-M1(2)/(B2(2)+B3(2));
Fn SLR =Fn_SLF;
xxx = Fn_SRF + Fn_SRR + Fn_SLF + Fn_SLR;

elseif (Roll == 0 && Pitch ~= 0) || (Roll == 0 && Pitch == 0)

Fn_SRF =-M2(3)/(C1(3)+C2(3));
Fn_SRR =-M1(3)/(B1(3)+B3(3));
Fn SLF = Fn_SRF;
Fn SLR = Fn_SRR;

xxx = Fn_SRF + Fn_SRR + Fn_SLF +Fn_SLR;
end
end

%

% Right Legs in contact with ground & Left Legs without contact

%

if (touchRF == 1 && touchRR == 1) && (touchLF == 0 && touchLR == 0)

Coefficient=[0  BI1(3);...
Ci3 0 I

b=[-MI1(3) -M2(3)];
x = inv(Coefficient)*b;

Fn_SRF =x(1);
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Fn_SRR =x(2);

Fn SLF =0;

Fn SLR =0;
end

%

% Left Legs in contact with ground & Right Legs without contact

%

if (touchRF == 0 && touchRR == 0) && (touchLF == 1 && touchLLR == 1)

Coefficient=[ 0  D3(3);...
E33) 0]

b=[-M3(3) -M4(3)]";
x = inv(Coefficient)*b;

Fn SRF =0;

Fn SRR =0;

Fn SLF =x(1);

Fn_SLR =x(2);
end

%
% Right Legs in contact with ground & Either Left Front or Rear Leg without contact
%
if (touchRF == 1 && touchRR == 1) &&...
((touchLF == 1 && touchLR == 0)||(touchLF == 0 && touchLR == 1))

Coefficient=[0  BI1(2) B2(2) B3(2);...
0  BI(3) B2(3) B3(3);...
C13) 0 C2(3) C3(3)..
HI(1) H2(1) H3(1) H4(D)];

b=[-MI1(2) -M1(3) -M2(3) -System Force U(1)]';
x = inv(Coefficient)*b;

Fn_SRF =x(1);
Fn SRR =x(2);
Fn SLF =x(3);
Fn _SLR =x(4);
%
% Either Right Front or Rear Leg in contact with ground & Left Legs with contact
%
elseif ((touchRF == 0 && touchRR == 1)||(touchRF == 1 && touchRR == 0))...
&& (touchLF == 1 && touchLR == 1)

Coefficient=[ D1(2) D2(2) 0 D3(2);...
D1(3) D2(3) 0 D3(3);...
E1(3) E2(3) E3(33) 0 ;..
HI1(1) H2(1) H3(1) H4(1)];



b =[-M3(2) -M3(3) -M4(3) -System Force U(1)]';

x = inv(Coefficient)*b;

Fn_SRF =x(1);
Fn SRR =x(2);
Fn_SLF =x(3);
Fn SLR =x(4);

end

%

% tolerance

%

if abs(Fn_SRF) < TOL

Fn_SRF =0,

end

if abs(Fn_SRR) < TOL
Fn_SRR =0;

end

if abs(Fn_SLF) < TOL
Fn_SLF =0;

end

if abs(Fn_SLR) < TOL
Fn SLR=0;

end

%
% Constraints: poistive Normal forces
% touching point
if (Fn_SRR <=0 && Fn_SLR <=0)
touchRR = 0;
touchLR = 0;
Fn_SRF =-M3(2)/D1(2);
Fn_SLF = -M1(2)/B2(2);
elseif (Fn_SRF <=0 && Fn_SLF <=0)
touchRF = 0;
touchLF = 0;
Fn_SRR =-M4(2)/E2(2);
Fn_SLR =-M2(2)/C3(2);
elseif (Fn_SRF <=0 && Fn_SRR <=0)
touchRF = 0;
touchRR = 0;
Fn_SLF = -M4(3)/E3(3);
Fn_SLR =-M3(3)/D3(3);
elseif (Fn_SLF <=0 && Fn_SLR <=0)
touchLF = 0;
touchLR = 0;
Fn_SRF =-M2(3)/C1(3);
Fn_SRR =-M1(3)/B1(3);
end
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if Fn SRF <=0
touchRF = 0;
Fn_SRF =0;

end

if Fn SRR <=0
touchRR = 0;
Fn SRR =0;

end

if Fn_ SLF <=0
touchLF = 0;
Fn_SLF = 0;

end

if Fn_SLR <=0
touchLR = 0;
Fn _SLR =0;

end

FnSRF = Fn_SRF;
FnSRR =Fn_SRR;
FnSLF =Fn SLF;

FnSLR =Fn_SLR;

xxx = FnSRF + FnSRR + FnSLF + FnSLR;
%
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rU CM = (rcU_OR*mO0 + rcU_1R*ml + rcU 2R*m2 + rcU_3RF*m3 + rcU 4RF*m4 + rcU 3RR*m3 +

rcU_4RR*m4 ...
+rcU_1L*ml +rcU 2L*m2 + rcU_3LF*m3 + rcU_4LF*m4 + rcU_3LR*m3 +
rcU_4LR*m4)/ ...
(MmO + 2*(ml + m2) + 4*(m3 + m4));

rCM_4RF =rU 4RF -rU CM;
rCM_4RR =rU 4RR -rU _CM;
rCM_4LF =rU 4LF - U _CM,;

rCM_4LR =1U 4LR -1U _CM;

rOR_4LF =inv(AU_OR(1:3, 1:3)) * rU_4RF,

rOR_CM = inv(AU_OR(1:3, 1:3)) * tU_CM,;

rCMO_4LF =rOR_4LF -rOR_CM;

alfa LF = atan2(rCMO0_4LF(1), r*CMO0_4LF(3))*180/pi + 90;

alfa yU RF = atan2(rCM_4RF(1), rCM_4RF(3))*180/pi + 90;
alfa yU RR = atan2(rCM_4RR(1), rCM_4RR(3))*180/pi + 90;
alfa yU LF = atan2(rCM_4LF(1), rCM_4LF(3))*180/pi + 90;
alfa yU LR =atan2(rCM_4LR(1), rCM_4LR(3))*180/pi + 90;

alpha_yU Front=alfa yU RF -alfa yU LF;
alpha yU Rear =alfa yU RR -alfa yU LR;

alfa zU RF = atan2(rCM_4RF(1), rCM_4RF(2))*180/pi + 90;
alfa zU RR =atan2(rCM_4RR(1), r*CM_4RR(2))*180/pi + 90;
alfa zU LF = atan2(rCM_4LF(1), *CM_4LF(2))*180/pi + 90;



278
alfa zU LR = atan2(rCM_4LR(1), r*CM_4LR(2))*180/pi + 90;

alpha zU Front = alfa zU RF -alfa zU LF;
alpha zU Rear =alfa zU RR -alfa zU LR;

alfa weight = atan2(System Force U(1), System Force U(3))*180/pi + 90;

w_CM = [-43.56; 0 ;0];

MA4RF = cross(rtCM_4RF, w_CM);
M4RR = cross(rCM_4RR, w_CM);
MA4LF = cross(rCM_4LF, w_CM);

MA4LR = cross(rCM_4LR, w_CM);

MU _CM = cross(tU_ CM , w_CM);

MU _nSRF = cross(rU_4RF, [FnSRF; 0; 0]);

MU_nSRR = cross(rU_4RR, [FnSRR; 0; 0]);
MU _nSLF = cross(rU_4LF, [FnSLF; 0; 0]);

MU _nSLR = cross(rU_4LR, [FnSLR; 0; 0]);

%
% Center of Mass Position vector with respect to universal farme
%
rU CM = (rcU_OR*m0 + rcU_1R*ml + rcU_2R*m2 + rcU_3RF*m3 + rcU_4RF*m4 + rcU_3RR*m3 +
rcU_4RR*m4 ...
+rcU_1L*ml +rcU 2L*m2 + rcU 3LF*m3 + rcU_4LF*m4 + rcU _3LR*m3 + rcU_4LR*m4)/ ...
(mO0 + 2*(ml + m2) + 4*(m3 + m4));

%
% System Forces
%
FU = touchRF * AU_SRF(1:3,1:3)*[FnSRF -meu 0]' + ...
touchRR * AU _SRR(1:3,1:3)*[FnSRR -meu 0] + ...
touchLF * AU SLF(1:3,1:3)*[FnSLF -meu 0] + ...
touchLR * AU SLR(1:3,1:3)*[FnSLR -meu 0]' + ...
AU 4RF(1:3,1:3)*f4RR + AU 3RF(1:3,1:3)*3RF + AU 4RR(1:3,1:3)*f4RR +
AU 3RR(1:3,1:3)*f3RR + ...
AU 2R(1:3,1:3)*f2R + AU_1R(1:3,1:3)*fIR + AU 4LF(1:3,1:3)*f4LF + AU 3LF(1:3,1:3)*f3LF + ...
AU _4LR(1:3,1:3)*f4LR + AU 3LR(1:3,1:3)*f3LR + AU 2L (1:3,1:3)*f2L + AU_1L(1:3,1:3)*f1L + ...
AU O0R(1:3,1:3)*f0R;

fo = AU 4RF(1:3,1:3)*f4RF + AU 3RF(1:3,1:3)*f3RF + ...
AU 4RR(1:3,1:3)*f4RR + AU 3RR(1:3,1:3)*f3RR + ...
AU 2R(1:3,1:3)*R2R + AU_IR(1:3,1:3)*fIR  + ...
AU OR(1:3,1:3)*f0R + AU_1L(1:3,1:3)*fIL  +...
AU 2L(1:3,1:3)*f2L + AU _3LF(1:3,1:3)*f3LF +...
AU _4LF(1:3,1:3)*fALF + AU 3LR(1:3,1:3)*f3LR + ...
AU _4LR(1:3,1:3)*f4LR;

f gravity =[-Mass*g; 0; 0];

f inertial = fc - [-Mass*g; 0; 0];
%
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% System Moments

%
MU

= touchRF * cross(rU_4RF, AU SRF(1:3,1:3)*[FnSRF -meu*FnSRF 0]') + ...
touchRR * cross(rtU_4RR, AU_SRR(1:3,1:3)*[FnSRR -meu*FnSRR 0]") + ...

touchLF * cross(rU_4LF, AU_SLF(1:3,1:3)*[FnSLF -meu*FnSLF 0]") + ...

touchLR * cross(rU_4LR, AU SLR(1:3,1:3)*[FnSLR -meu*FnSLR 0]") + ...
cross(rcU_4RF, AU 4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU 3RF(1:3,1:3)*f3RF)+...
cross(rcU_4RR, AU _4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU 3RR(1:3,1:3)*f3RR)+...
cross(rcU 2R, AU 2R(1:3,1:3)*f2R) + cross(rcU_IR, AU _1R(1:3,1:3)*f1R)+...
cross(rcU_OR, AU OR(1:3,1:3)*fOR) + cross(rcU_1L, AU _1L(1:3,1:3)*f1L)+...
cross(rcU 2L, AU 21(1:3,1:3)*f2L) + cross(rcU_3LF, AU 3LF(1:3,1:3)*f3LF)+...
cross(rcU_4LF, AU 4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU 3LR(1:3,1:3)*f3LR)+...
cross(rcU_4LR, AU 4LR(1:3,1:3)*f4LR) + ...

AU _4RF(1:3,1:3)*tow4RF + AU 3RF(1:3,1:3)*tow3RF + ...

AU 4RR(1:3,1:3)*towd4RR + AU _3RR(1:3,1:3)*tow3RR + ...

AU 4LF(1:3,1:3)*tow4LF + AU 3LF(1:3,1:3)*tow3LF + ...

AU 4LR(1:3,1:3)*tow4LR + AU 3LR(1:3,1:3)*tow3LR + ...

AU 2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*towlR + ...

AU 21(1:3,1:3)*tow2L + AU _1L(1:3,1:3)*tow1L + ...

AU OR(1:3,1:3)*tow0R,;

towc = AU_4RF(1:3,1:3)*tow4RF + AU 3RF(1:3,1:3)*tow3RF +...

AU 4RR(1:3,1:3)*tow4RR + AU _3RR(1:3,1:3)*tow3RR +...
AU 4LF(1:3,1:3)*tow4LF + AU 3LF(1:3,1:3)*tow3LF +...
AU 4LR(1:3,1:3)*tow4LR + AU 3LR(1:3,1:3)*tow3LR +...
AU 2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*towIR +...

AU 21(1:3,1:3)*tow2L + AU _1L(1:3,1:3)*towlL +...

AU O0R(1:3,1:3)*towOR;

fc_ Moment = cross(rcU_4RF, AU 4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU 3RF(1:3,1:3)*f3RF)+...

cross(rcU_4RR, AU _4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU 3RR(1:3,1:3)*f3RR)+...
cross(rcU 2R, AU 2R(1:3,1:3)*f2R) + cross(rcU_1R, AU _1R(1:3,1:3)*fIR)+...
cross(rcU_OR, AU OR(1:3,1:3)*fOR) + cross(rcU_1L, AU 1L(1:3,1:3)*f1L)+...
cross(rcU 2L, AU 2L(1:3,1:3)*f2L) + cross(rcU_3LF, AU 3LF(1:3,1:3)*f3LF)+...
cross(rcU_4LF, AU 4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU _3LR(1:3,1:3)*{3LR)+...
cross(rcU_4LR, AU 4LR(1:3,1:3)*f4LR);

f gravity Moment = cross(rU_CM, f gravity);

f inertial Moment = cross(rU_CM, f inertial);

Normal_Forces_moments = touchRF * cross(rU_4RF, AU _SRF(1:3,1:3)*[FnSRF -meu 0]") + ...

%

touchRR * cross(rtU_4RR, AU_SRR(1:3,1:3)*[FnSRR -meu 0]') + ...
touchLF * cross(tU_4LF, AU _SLF(1:3,1:3)*[FnSLF -meu 0]') + ...
touchLR * cross(rU_4LR, AU SLR(1:3,1:3)*[FnSLR -meu 0]');

% Masses on the four legs

%

mSRF = FnSRF / (g * cos(Pitch));
mSRR =FnSRR / (g * cos(Pitch));
mSLF = FnSLF / (g * cos(Pitch));



mSLR =FnSLR / (g * cos(Pitch));

mass = mSRF + mSRR + mSLF + mSLR;
%

FNSRF = -M2(3)/(touchRF*C1(3));
FNSRR = -M1(3)/(touchRR*B1(3));

if FNSRF <=0
FNSRF = 0;

end

if FNSRR <=0
FNSRR = 0;

end

tow_Critical Right = touchRF * cross(rU_4RF, AU _SRF(1:3,1:3)*[FNSRF -meu*FNSRF 0]") + ...
touchRR * cross(rU_4RR, AU _SRR(1:3,1:3)*[FNSRR -meu*FNSRR 0]") + ...
cross(rcU_4RF, AU 4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU 3RF(1:3,1:3)*f3RF)+...

cross(rcU_4RR, AU_4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU 3RR(1:3,1:3)*f3RR)+...

cross(rcU 2R, AU 2R(1:3,1:3)*f2R) + cross(rcU_1R, AU _1R(1:3,1:3)*f1R)+...
cross(rcU_OR, AU O0R(1:3,1:3)*fOR) + cross(rcU_1L, AU _1L(1:3,1:3)*fIL)+...
cross(rcU 2L, AU 2L(1:3,1:3)*f2L) + cross(rcU_3LF, AU 3LF(1:3,1:3)*f3LF)+...
cross(rcU_4LF, AU 4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU 3LR(1:3,1:3)*f3LR)+...
cross(rcU_4LR, AU 4LR(1:3,1:3)*f4LR) + ...

AU 4RF(1:3,1:3)*tow4RF + AU _3RF(1:3,1:3)*tow3RF + ...

AU 4RR(1:3,1:3)*tow4RR + AU 3RR(1:3,1:3)*tow3RR + ...

AU 4LF(1:3,1:3)*tow4LF + AU _3LF(1:3,1:3)*tow3LF + ...

AU 4LR(1:3,1:3)*tow4LR + AU 3LR(1:3,1:3)*tow3LR + ...

AU 2R(1:3,1:3)*tow2R + AU _1R(1:3,1:3)*towlR + ...

AU 21(1:3,1:3)*tow2L + AU _1L(1:3,1:3)*towlL + ...

AU OR(1:3,1:3)*towOR;

FNSRF = -M3(2)/(touchRF*D1(2));
FNSLF = -M1(2)/(touchLF*B2(2));

if FNSRF <=0
FNSRF = 0;

end

if FNSLF <=0
FNSLF = 0;

end

tow_Critical Front = touchRF * cross(rtU_4RF, AU_SRF(1:3,1:3)*[FNSRF -meu*FNSRF 0]) + ...
touchLF * cross(tU_4LF, AU SLF(1:3,1:3)*[FNSLF -meu*FNSLF 0]') + ...
cross(rcU_4RF, AU 4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU 3RF(1:3,1:3)*f3RF)+...

cross(rcU_4RR, AU 4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU 3RR(1:3,1:3)*f3RR)+...

cross(rcU 2R, AU 2R(1:3,1:3)*f2R) + cross(rcU_IR, AU _1R(1:3,1:3)*fIR)+...
cross(rcU_OR, AU O0R(1:3,1:3)*fOR) + cross(rcU_1L, AU 1L(1:3,1:3)*f1L)+...
cross(rcU 2L, AU 2L(1:3,1:3)*f2L) + cross(rcU_3LF, AU 3LF(1:3,1:3)*f3LF)+...
cross(rcU_4LF, AU 4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU 3LR(1:3,1:3)*f3LR)+...
cross(rcU_4LR, AU 4LR(1:3,1:3)*f4LR) + ...

AU 4RF(1:3,1:3)*tow4RF + AU _3RF(1:3,1:3)*tow3RF + ...
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AU 4RR(1:3,1:3)*tow4RR + AU 3RR(1:3,1:3)*tow3RR + ...
AU 4LF(1:3,1:3)*tow4LF + AU 3LF(1:3,1:3)*tow3LF + ...
AU 4LR(1:3,1:3)*tow4LR + AU _3LR(1:3,1:3)*tow3LR + ...
AU 2R(1:3,1:3)*tow2R + AU_1R(1:3,1:3)*towlR + ...
AU 21(1:3,1:3)*tow2L + AU _1L(1:3,1:3)*towlL + ...

AU _0R(1:3,1:3)*towOR,;

%FNSRF
%FNSLF

FNSLF = -M4(3)/(touchLF*E3(3));
FNSLR = -M3(3)/(touchLR*D3(3));

if FNSLF <=0
FNSLF = 0;

end

if FNSLR <=0
FNSLR =0;

end

tow_Critical_Left = touchLF * cross(rU_4LF, AU _SLF(1:3,1:3)*[FNSLF -meu*FNSLF 0]") + ...
touchLR * cross(rU_4LR, AU SLR(1:3,1:3)*[FNSLR -meu*FNSLR 0]") + ...
cross(rcU_4RF, AU 4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU 3RF(1:3,1:3)*f3RF)+...

cross(rcU_4RR, AU 4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU 3RR(1:3,1:3)*f3RR)+...

cross(rcU 2R, AU 2R(1:3,1:3)*f2R) + cross(rcU_IR, AU _1R(1:3,1:3)*fIR)+...
cross(rcU_OR, AU OR(1:3,1:3)*fOR) + cross(rcU_1L, AU _1L(1:3,1:3)*f1L)+...
cross(rcU 2L, AU 21(1:3,1:3)*f2L) + cross(rcU_3LF, AU 3LF(1:3,1:3)*f3LF)+...
cross(rcU_4LF, AU 4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU 3LR(1:3,1:3)*{3LR)+...
cross(rcU_4LR, AU 4LR(1:3,1:3)*f4LR) + ...

AU _4RF(1:3,1:3)*tow4RF + AU _3RF(1:3,1:3)*tow3RF + ...

AU _4RR(1:3,1:3)*towd4RR + AU_3RR(1:3,1:3)*tow3RR + ...

AU 4LF(1:3,1:3)*tow4LF + AU 3LF(1:3,1:3)*tow3LF + ...

AU _4LR(1:3,1:3)*tow4LR + AU 3LR(1:3,1:3)*tow3LR + ...

AU 2R(1:3,1:3)*tow2R + AU _1R(1:3,1:3)*towlR + ...

AU 21(1:3,1:3)*tow2L + AU_1L(1:3,1:3)*towlL + ...

AU O0R(1:3,1:3)*towOR,;

FNSRR = -M4(2)/(touchRR*E2(2));
FNSLR = -M2(2)/(touchLR*C3(2));

if FNSRR <=0
FNSRR = 0;

end

if FNSLR <=0
FNSLR =0;

end

tow_Critical Rear = touchRR * cross(rU_4RR, AU_SRR(1:3,1:3)*[FNSRR -meu*FNSRR 0]") + ...
touchLR * cross(rU_4LR, AU _SLR(1:3,1:3)*[FNSLR -meu*FNSLR 0]") + ...
cross(rcU_4RF, AU 4RF(1:3,1:3)*f4RF) + cross(rcU_3RF, AU 3RF(1:3,1:3)*f3RF)+...

cross(rcU_4RR, AU _4RR(1:3,1:3)*f4RR) + cross(rcU_3RR, AU 3RR(1:3,1:3)*f3RR)+...

cross(rcU 2R, AU 2R(1:3,1:3)*f2R) + cross(rcU_IR, AU _1R(1:3,1:3)*fIR)+...
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cross(rcU_OR, AU OR(1:3,1:3)*fOR) + cross(rcU_1L, AU _1L(1:3,1:3)*f1L)+...
cross(rcU 2L, AU 21(1:3,1:3)*f2L) + cross(rcU_3LF, AU 3LF(1:3,1:3)*f3LF)+...

cross(rcU_4LF, AU 4LF(1:3,1:3)*f4LF) + cross(rcU_3LR, AU 3LR(1:3,1:3)*{3LR)+...

cross(rcU_4LR, AU 4LR(1:3,1:3)*f4LR) + ...
AU _4RF(1:3,1:3)*tow4RF + AU _3RF(1:3,1:3)*tow3RF + ...
AU 4RR(1:3,1:3)*tow4RR + AU 3RR(1:3,1:3)*tow3RR + ...
AU 4LF(1:3,1:3)*tow4LF + AU 3LF(1:3,1:3)*tow3LF + ...
AU 4LR(1:3,1:3)*tow4LLR + AU 3LR(1:3,1:3)*tow3LR + ...
AU 2R(1:3,1:3)*tow2R + AU _1R(1:3,1:3)*towIR +...
AU 21(1:3,1:3)*tow2L. + AU_1L(1:3,1:3)*towlL + ...
AU OR(1:3,1:3)*towOR;

%FNSRR

%FNSLR

% pause
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DH.m

% A Denavit Hartenberg Parameters describes the kinematics of a manipulator

%

% these DH Parameters are filled in matrix, each row represents one link of

% the manipulator

% our mobile robot have no prismatic joint. so, the variable joints are joints' angles
% represented in theta.

% All joints' angles are defined in radians.
function dh= DH(q)
theta =q;

%theta(4); % theta_4 does not effect on the manipulation.

% theta d a alpha  sigma

%

dh=[ O 0 0 0 0
theta(1) 0.2 0 -pi/2 0
theta(2) 0 0 pi/2 0
theta(3) 0 0.4 0 0

theta(4) 0 005 0 0%
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DHtransformation.m

%T = [ cos(theta) -sin(theta)*cos(alpha) sin(theta)*sin(alpha) a*cos(theta)
%  sin(theta) cos(theta)*cos(alpha) -cos(theta)*sin(alpha) a*sin(theta)
% 0 sin(alpha) cos(alpha) d

% 0 0 0 1 1;

function [T] = DHtransformation(theta, d, a, alpha)

T = rotz(theta) * translation(0,0,d) * translation(a,0,0) * rotx(alpha);

Dynamics.m

function D = Dynamics(d, a)

dl =d(1);
d2=0;

a3 =a(3);
ad = a(4);

a = 0.30; % half length of the platform in meter
b =0.02; % half sickness of the platform in meter

Yo-------- Platform Mass, Volume and Density ------
m0=4; %kg
ml=1; %kg
m2=0; %kg
m3=1; %kg

%-------- wheel Mass, Volume and Density ------
a4 ex = a4;
a4 in=0.03;

%density = 79.577471,
density = 98.999999;
Volume4 _ex =pi * ad_ex"2;
Volume4 in=pi * a4 in"2;

m4_ex = density * Volume4 ex; % kg
m4_in = density * Volume4 in; % kg

m4 =0.5; % kg, m4d=m4 ex-m4_in=0.4976;
m = [m0, ml, m2, m3, m4]';

%
% Position vector of center of masses




rc 0=[0 0 01,
rc 1=[0 0.5*d1 07;
rc 2=1[0 0 -0.5*d2]";
rc_3=[-0.5%a3 0 071,
rc 4=[-a4 0 071,

rc=[rc 0,rc_1,rc_ 2,rc 3,rc 4]}
%
% Inertia matrices

10 = (m0/3)*[a*2+d172 0 0;0 br2+d1"2 00 0 a"2+b"2];
I1 = (m1*d1°2/12)*[100;000; 00 1];
12 = (m2*d22/12)*[1 0 0; 0 1 0; 0 0 0];
I3 = (m3*a3/2/12)*[00 0; 0 1 0; 0 0 1];

14 ex =(m4 _ex*ad ex"2)*[1/400;01/40;00 1/2];
14 in=(m4 _in*a4 in"2)*[1/400;01/40;00 1/2];
14=14 ex-14 in;

I=[ I0(1,1) 102,2) 103,3) 10(1,2) 10(2,3) 10(1,3);..
(L) 112,2) 113,3) 11(1,2) 11(2,3) I1(1.3);...
2(1,1) 1222) 1233) 12(12) 12(2,3) 12(1,3);...
B(L1) 1322) 1333) 13(12) 1323) I3(13);..
14(1,1) 14(22) 1433) 14(12) 14(2.3) 14(1,3)];

%

% mrxryrzlxxlyylzz1
D= [m, rc, I];
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HT 2 RPY.m

function [alpha 1,alpha 2,alpha 3]=HT 2 RPY(A 0 4)

nx=A 0 4(1,1);
ny=A_0 4(2,1);
nz=A 0 4(3,1);

ox=A 0 4(1,2);
oy=A 0 4(2,2);
oz=A 0 4(3,2);

ax=A_0 4(1,3);
ay=A 0 4(2,3);
az=A 0 4(3,3);
L/

alpha 2 = atan2(-nz, nx);
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alpha_3 = atan2(ny, (cos(alpha_2)*nx - sin(alpha 2)*nz));
alpha_1 = atan2((sin(alpha_2)*ox + cos(alpha_2)*o0z), (sin(alpha_2)*ax + cos(alpha_2)*az));
A

Invkinematic.m

function theta = invkinematic(T, s)

TOL = 0.001;
[nr, nc] = size(T);

% test for accuracy
for i=1:nr
for j=l:nc
if abs(T(i,j)) < TOL
T(i,j) = 0;
end
end
end

dl1=0.2;
a3=04;
a4 =0.05;

nx = T(1,1);
ny =T(2,1);
nz=T(3,1);

ox =T(1,2);

oy =T(2,2);

oz =T(3,2);

ax =T(1,3);

ay = T(2,3);

az =T(3,3);

px = T(1,4);

py = T(2,4);

pz="T(3,4);
theta 1 = atan2(ay,ax);
theta 2 = atan2( -(-pz+d1), -(cos(theta_1)*px + sin(theta_1)*py) );

K1 = cos(theta_1)*cos(theta 2)*px + sin(theta 1)*cos(theta_2)*py - sin(theta_2)*pz + sin(theta 2)*d1;
K2 = -sin(theta_1)*px + cos(theta_1)*py;

if (s == 'RF")
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theta 4 = acos((K172 + K22 - (a4"2+a3"2))/ (2*a3*a4));

elseif (s =="LF")
theta 4 = -acos((K172 + K272 - (a4"2+a3"2))/ (2*a3*a4d));

end

K3 = ad4*cos(theta_4) + a3;

K4 = ad*sin(theta_4);

theta 3 = atan2((K1*K4 - K2*K3), -(K1*K3 + K2*K4));

theta = [theta_1; theta 2; theta 3; theta 4]*180/pi;

Kinematic.m
function [A_0_4] = Kinematic(theta, d, a, alpha, B3, pitch)

theta(4) = -theta(1) - theta(3) + B3 - pitch; % theta_4 manipulated in contact point of wheel with ground
theta(3) = theta(3) + pi;

fori=1:4
A = DHtransformation(theta(i), d(i), a(i), alpha(i));

if (i==1)

A0 1=A;
elseif (i==2)

A l2=A;
elseif (i==3)

A 2 3=A;
elseif (i==4)

A 3 4=A,

end;
end;

AO04=A01*A 12*%A 2 3*A 3 4; %Homogeneous Transformation from base to end-effector
frame

locomotion DN.m

%
% increasing velocity linearly = vv*t(p), and constant acceleration = vv
%

function [A_4RF, A 4RR, A 4LF, A_4LR, V_4RF,V_4RR, V_4LF,V_4LR, d 4RF,d 4RR,d 4LF,
d_4LR,...

Tdd RF, Tdd RR, Tdd LF, Tdd LR, Td RF, Td RR, Td LF, Td LR,...

T RF, T RR, T LF, T LR, tdelay R, tdelay L]=locomotion DN(Touch, vv, t, a, q0)
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np = numcols(t);

At4RF = zeros(np,1); At4RR = zeros(np,1); At4LF = zeros(np,1); At4LR = zeros(np,1);
Vt4RF = zeros(np,1); Vt4RR = zeros(np,1); Vt4LF = zeros(np,1); Vt4LR = zeros(np,1);
D _4RF = zeros(1,np); D_4RR = zeros(1,np); D_4LF = zeros(1,np); D _4LR = zeros(1,np);

Thetadd RF = zeros(np,1); Thetadd RR = zeros(np,1); Thetadd LF = zeros(np,1); Thetadd LR =
zeros(np, 1);

Thetad RF = zeros(np,1); Thetad RR = zeros(np,1); Thetad LF = zeros(np,1); Thetad LR = zeros(np,1);
Theta RF = zeros(np,1); Theta RR = zeros(np,1); Theta LF = zeros(np,1); Theta LR = zeros(np,1);

for p=1:np,

At4RF(p) = Touch(1)*vv; % m/(sec*sec)
At4RR(p) = Touch(2)*vv; % m/(sec*sec)
At4LF(p) = -Touch(3)*vv; % m/(sec*sec)
At4LR(p) = -Touch(4)*vv; % m/(sec*sec)

Vt4RF(p) = Touch(1)*vv*t(p); % m/sec
Vt4RR(p) = Touch(2)*vv*t(p); % m/sec
Vt4LF(p) = -Touch(3)*vv*t(p); % m/sec
Vt4LR(p) = -Touch(4)*vv*t(p); % m/sec

D _4RF(p) = Touch(1)*vv*( 0.5%t(p)"2); % m
D 4RR(p) = Touch(2)*vv*( 0.5*%t(p)"2); % m
D_4LF(p) = Touch(3)*vv*(-0.5*t(p)*2); % m
D 4LR(p) = Touch(4)*vv*(-0.5*t(p)"2); % m

Thetadd RF(p) = At4RF(p)/a(4); % rad/(sec*sec)
Thetadd RR(p) = At4RR(p)/a(4); % rad/(sec*sec)
Thetadd LF(p) = At4LF(p)/a(4); % rad/(sec*sec)

Thetadd LR(p) = At4LR(p)/a(4); % rad/(sec*sec)

Thetad RF(p) = Vt4RF(p)/a(4); % rad/sec
Thetad RR(p) = Vt4RR(p)/a(4); % rad/sec
Thetad LF(p) = Vt4LF(p)/a(4); % rad/sec
Thetad LR(p) = Vt4LR(p)/a(4); % rad/sec

Theta RF(p) =D 4RF(p)/a(4); % rad

Theta RR(p) =D _4RR(p)/a(4); % rad

Theta LF(p) =D_4LF(p)/a(4); % rad

Theta LR(p) =D 4LR(p)/a(4); % rad
end

%

% time delay occured between the front and rear legs on both sides; right
% and front sides

%

tdelay R = sqrt((-a(3)*sin(q0(3,1)) + a(3)*sin(q0(3,2)))/(vv*0.5));
tdelay L = sqrt(( a(3)*sin(q0(3,3)) - a(3)*sin(q0(3,4)))/(vv*0.5));

%

A 4RF = At4RF; A 4RR = At4RR; A 4LF = At4LF; A 4LR = At4LR;




V_4RF = V44RF; V_4RR = V&4RR; V_4LF = VI4LF; V_4LR = VH4LR,;

d 4RF =D _4RF; d 4RR =D 4RR;
d 4LF=D 4LF; d 4LR =D 4LR;

Tdd RF =Thetadd RF; Tdd RR = Thetadd RR;
Tdd LF = Thetadd LF; Tdd LR = Thetadd LR;

Td RF = Thetad RF; Td RR = Thetad RR;
Td LF =Thetad LF; Td LR = Thetad LR;

T RF =Theta RF; T RR =Theta RR;
T LF=Theta LF; T LR =Theta LR;
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Rotx.m
%
% homogeneous transformation for a rotation of t about the x-axis.
%
function r = rotx(t)

r= [1 O 0 0
0 cos(t) -sin(t) 0

0 sin(t) cos(t) 0

1

0 0 0 IR

Roty.m
%
% homogeneous transformation for a rotation of t about the y-axis.
%

function r = roty(t)

r = [cos(t) 0 sin(t) 0
0 1 0 0
-sin(t) 0 cos(t) O
0 0 0 1];
Rotz.m
%

% homogeneous transformation for a rotation of t about the z-axis.
%

function r = rotz(t)

r=[cos(t) -sin(t) O 0
sin(t) cos(t) O 0
0 0 1 0

0 0 0 1];
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GGl.m

%
% Flat Surface
%

function [input RF, input RR, input LF, input LR, .
beta SRF zs, beta SRR zs, beta SLF zs, beta SLR ZS,..
beta SRF ys, beta SRR _ys, beta SLF ys, beta SLR ys] GG15(t, tdelay R, tdelay L, a, q0),

ns = numcols(t);
tm = t(ns)/2;

tp R=tdelay R; %time delay b/w RF and RR
tp L =tdelay L; %time delay b/w LF and LR

LEG_RF = zeros(1,ns);
LEG_RR = zeros(1,ns);
LEG_LR = zeros(1,ns);
LEG_LF = zeros(1,ns);

BETA SRF zs = zeros(l, ns);
BETA SRR zs = zeros(1, ns);
BETA SLF zs = zeros(1, ns);
BETA SLR zs = zeros(1, ns);

BETA SRF ys = zeros(l, ns);
BETA SRR ys = zeros(1, ns);
BETA _SLF ys =zeros(1, ns);
BETA SLR_ys = zeros(1, ns);

for p=1:ns

LEG RF(p)=3;

LEG RR(p)=3;

LEG LF(p)=3;

LEG LR(p) =3;
end

for p=1:ns
BETA_SRF zs(p)=0;
BETA SRR zs(p) =0;
BETA _SLF zs(p) =0;
BETA SLR zs(p) =0;

BETA _SRF ys(p) =0;
BETA SRR ys(p)=0;
BETA _SLF ys(p)=0;
BETA _SLR ys(p)=0;
end
BETA_SRR zs*180/pi;



input RF =LEG_RF;
input RR =LEG_RR;
input LF=LEG LF;
input LR =LEG_LR;

beta SRF zs=BETA SRF zs;
beta SRR zs = BETA SRR zs;
beta SLF zs=BETA SLF zs;
beta SLR zs=BETA SLR zs;

beta SRF ys=BETA_SRF ys;
beta SRR ys =BETA SRR ys;
beta SLF ys=BETA SLF ys;

beta SLR ys=BETA SLR ys;
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GG2.m
%
% Step flat-inclined surface
%

function [input RF, input RR, input LF, input LR, ...
beta SRF zs, beta SRR zs, beta SLF zs, beta SLR zs,...

beta SRF ys, beta SRR _ys, beta SLF ys, beta SLR _ys] = GG15(t, tdelay R, tdelay L, a, q0),

ns = numcols(t);

tp R =tdelay R; %time delay b/w RF and RR
tp_ L =tdelay L; %time delay b/w LF and LR

LEG_RF = zeros(1,ns);
LEG_RR = zeros(1,ns);
LEG_LR = zeros(1,ns);
LEG_LF = zeros(1,ns);

BETA SRF zs = zeros(l, ns);
BETA SRR zs = zeros(1, ns);
BETA SLF zs = zeros(1, ns);
BETA SLR zs = zeros(1, ns);

BETA _SRF ys = zeros(1, ns);
BETA SRR ys = zeros(1, ns);
BETA _SLF ys =zeros(1, ns);
BETA SLR_ys = zeros(1, ns);

for p=1:ns
LEG _RF(p)=3.2;
LEG RR(p)=3.2;
LEG LF(p)=3;
LEG _LR(p)=3;
end




for p=1:ns
BETA SRF zs(p) =0;
BETA SRR zs(p) =0;
BETA _SLF zs(p)=0;
BETA SLR zs(p) =0;

BETA _SRF ys(p) =0;

BETA SRR ys(p)=0;

BETA_SLF ys(p) = pi/8;

BETA_SLR ys(p) = pi/8;
end

%BETA_SRR_zs*180/pi;

input RF =LEG _RF;
input RR=LEG_RR;
input LF =LEG_LF;

input LR=LEG_LR;

beta SRF zs=BETA SRF zs;
beta SRR zs =BETA SRR zs;
beta SLF zs=BETA _SLF zs;
beta SLR zs=BETA SLR zs;

beta SRF ys =BETA SRF ys;
beta SRR ys=BETA SRR ys;
beta SLF ys=BETA SLF ys;

beta SLR ys=BETA SLR ys;
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GGI9.m

%
% Inclined surface
%

function [input RF, input RR, input LF, input LR, ...
beta SRF zs, beta SRR zs, beta SLF zs, beta SLR zs,...

beta SRF ys, beta SRR ys, beta SLF ys, beta SLR_ys] = GGI(t, tdelay R, tdelay L, a, q0),

ns = numcols(t);

tp_ R =tdelay R; %time delay b/w RF and RR
tp_ L =tdelay L; %time delay b/w LF and LR

LEG_RF = zeros(1,ns);
LEG_RR = zeros(1,ns);
LEG_LR = zeros(1,ns);
LEG_LF = zeros(1,ns);
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BETA SRF zs = zeros(l, ns);
BETA SRR zs = zeros(1, ns);
BETA SLF zs = zeros(1, ns);
BETA SLR_zs = zeros(1, ns);

BETA SRF ys = zeros(1, ns);
BETA SRR ys = zeros(1, ns);
BETA _SLF ys =zeros(1, ns);
BETA SLR ys = zeros(1, ns);

for p=1:ns

LEG_RF(p)=3.2;

LEG RR(p)=3;

LEG _LF(p)=3.2;

LEG _LR(p) =3;
end

for p=1:ns
BETA_SRF_zs(p) =-20.70808185*pi/180;
BETA SRR zs(p) =-20.70808185*pi/180;
BETA_SLF zs(p) =-20.70808185*pi/180;
BETA_SLR_zs(p) =-20.70808185*pi/180;

BETA _SRF ys(p) =0;

BETA SRR ys(p)=0;

BETA _SLF ys(p) =0;

BETA_SLR ys(p)=0;
end

input RF =LEG _RF;
input RR=LEG_RR;
input LF =LEG_LF;
input LR =LEG LR;

beta SRF zs=BETA SRF zs;
beta SRR zs = BETA_ SRR zs;
beta SLF zs=BETA_SLF zs;
beta SLR zs=BETA SLR zs;

beta SRF ys =BETA SRF ys;
beta SRR ys=BETA SRR ys;
beta SLF ys=BETA SLF ys;

beta SLR ys=BETA SLR ys;

GGS5.m

%
% flat surface, then inclined surface
%
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function [input RF, input RR, input LF, input LR, ...
beta SRF zs, beta SRR zs, beta SLF zs, beta SLR _zs,...
beta SRF ys, beta SRR _ys, beta SLF ys, beta SLR_ys] = GG5(t, tdelay R, tdelay L, a, q0),

ns = numcols(t);
tm = t(ns)/2;

tp R =tdelay R; %time delay b/w RF and RR
tp_ L =tdelay L; %time delay b/w LF and LR

LEG_RF = zeros(1,ns);
LEG_RR = zeros(1,ns);
LEG_LR = zeros(1,ns);
LEG _LF = zeros(1l,ns);

BETA SRF zs = zeros(l, ns);
BETA SRR_zs = zeros(1, ns);
BETA SLF zs = zeros(1, ns);
BETA SLR zs = zeros(1, ns);

BETA SRF ys = zeros(1, ns);
BETA SRR ys = zeros(1, ns);
BETA SLF ys = zeros(l, ns);
BETA SLR ys = zeros(1, ns);

theta R = zeros(1, ns);
theta R = zeros(1, ns);

slope R = zeros(1, ns);
slope L = zeros(1, ns);

%
% Slope
%
for p=1:ns
if t(p) <=tm
theta R =0;
theta L =0;

elseif t(p) > tm
theta R = pi/6;
theta L = pi/6;
end

slope R = ((-a(3)*sin(q0(3,1))+a(3)*sin(q0(3,2)))*sin(theta_R))/tp_R;
slope L = ((a(3)*sin(q0(3,3))-a(3)*sin(q0(3,4)))*sin(theta_L))/tp L;
end

%

% Surface Function
%

for p=1:ns
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if t(p) <=tm
LEG RF(p)=3;
LEG RR(p)=3;
LEG LF(p)=3;
LEG _LR(p) =3;

elseif (t(p) > tm) && (t(p) <= (tm + tp_R))

LEG_RF(p) =3 + slope_R*(t(p) - tm);
LEG RR(p)=3;
LEG_LF(p) =3 + slope_L*(t(p) - tm);
LEG _LR(p) =3;

elseif t(p) > (tm + tp_R)

LEG_RF(p) =3 + slope_R*(t(p) - tm);
LEG RR(p) =3 + slope R*(t(p) - tp_R - tm);
LEG_LF(p) =3 + slope_L*(t(p) - tm);
LEG _LR(p) =3 +slope L*(t(p) - tp_L - tm);

end
end

for p=1:ns
if t(p) <=tm
BETA _SRF zs(p) =0;
BETA SRR zs(p) =0;
BETA _SLF zs(p) =0;
BETA SLR zs(p) =0;

elseif (t(p) > tm) && (t(p) <= (tm + tp_R))
BETA_SRF zs(p) = -theta R; %-atan(slope R);

BETA SRR zs(p)= 0; %-atan(slope R);
BETA _SLF zs(p) = -theta L; %-atan(slope L);
BETA SLR zs(p)= 0; %-atan(slope _L);

elseif t(p) > (tm + tp_R)
BETA _SRF zs(p) = -theta R; %-atan(slope R);
BETA_ SRR zs(p) = -theta R; %-atan(slope R);
BETA SLF zs(p) = -theta L; %-atan(slope L);
BETA SLR zs(p) = -theta L; %-atan(slope L);
end

BETA _SRF ys(p) =0;

BETA SRR ys(p)=0;

BETA _SLF ys(p) =0;

BETA_SLR ys(p)=0;
end

input RF =LEG _RF;
input RR=LEG RR;




input LF=LEG LF;
input LR =LEG LR;

beta SRF zs=BETA SRF zs;
beta SRR zs =BETA_ SRR zs;
beta SLF zs=BETA_SLF zs;
beta SLR zs=BETA SLR zs;

beta SRF ys=BETA SRF ys;
beta SRR ys=BETA SRR ys;
beta SLF ys=BETA SLF ys;

beta SLR ys=BETA SLR ys;
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%
% Sinusoidal Surface
%

GG7.m

function [input RF, input RR, input LF, input LR, ...

beta SRF zs, beta SRR zs, beta SLF zs, beta SLR _zs,...
beta SRF ys, beta SRR _ys, beta SLF ys, beta SLR_ys] = GG16(t, tdelay R, tdelay L, a, q0),

ns = numcols(t);
tm = t(ns)/2;

tp R =tdelay R; %time delay b/w RF and RR
tp_ L =tdelay L; %time delay b/w LF and LR

LEG_RF = zeros(1,ns);
LEG_RR = zeros(1,ns);
LEG_LR = zeros(1,ns);
LEG_LF = zeros(1,ns);

BETA SRF zs = zeros(l, ns);
BETA SRR zs = zeros(1, ns);
BETA SLF zs = zeros(1, ns);
BETA SLR zs = zeros(1, ns);

BETA SRF ys = zeros(1, ns);
BETA SRR ys = zeros(1, ns);
BETA SLF ys =zeros(1, ns);
BETA SLR ys = zeros(1, ns);

n=20;
Am =0.5;
for p=1:ns

LEG _RF(p) =3 + Am*sin((pi*(t(p) + tp_R/2))/(n*tp_R));
LEG_RR(p) =3 + Am*sin((pi*(t(p) - tp_R/2))/(n*tp_R));
LEG_LF(p) =3 + Am*sin((pi*(t(p) + tp_R/2))/(n*tp_L));
LEG_LR(p) =3 + Am*sin((pi*(t(p) - tp_L/2))/(n*tp_L));

end
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theta = zeros(1,ns);

for p=1:ns
theta(1,p) = asin((3 + Am*sin((pi*(t(p) - tp_R/2))/(n*tp_R))...
-3 - Am*sin((pi*(t(p) + tp_R/2))/(n)))/(-a(3)*sin(q0(3,1))+a(3)*sin(q0(3,2))));
end

for p=1:ns

BETA_SRF zs(p) = asin((Am*sin((pi*t(p))/(n*tp_R)) -...
Am*sin((pi*(t(p) + tp_R))/(n*tp_R)))/(-a(3)*sin(q0(3,1))+a(3)*sin(q0(3,2))));

BETA_ SRR zs(p) = asin((Am*sin((pi*(t(p) - tp_R))/(n*tp_R)) -...
Am*sin((pi*t(p))/(n*tp_R)))/(-a(3)*sin(q0(3,1))+a(3)*sin(q0(3,2))));

BETA_SLF zs(p) = asin((Am*sin((pi*t(p))/(n*tp_L)) -...
Am*sin((pi*(t(p) + tp_L))/(n*tp_L)))/(a(3)*sin(q0(3,3))-a(3)*sin(q0(3.4))));

BETA SLR zs(p) = asin((Am*sin((pi*(t(p) - tp_L))/(n*tp_L)) -...
Am*sin((pi*t(p))/(n*tp_L)))/(a(3)*sin(q0(3,3))-a(3)*sin(q0(3.4))));

BETA SRF ys(p)=0;

BETA SRR ys(p)=0;

BETA _SLF ys(p) =0;

BETA SLR ys(p) =0;
end

input RF =LEG_RF;
input RR=LEG_RR;
input LF=LEG LF;

input LR =LEG_LR;

beta SRF zs=BETA SRF zs;
beta SRR zs =BETA SRR zs;
beta SLF zs=BETA_SLF zs;

beta SLR zs=BETA SLR zs;

beta SRF ys=BETA SRF ys;
beta SRR ys=BETA SRR ys;
beta SLF ys=BETA SLF ys;

beta SLR ys=BETA SLR ys;
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GGl11l.m

%
% Random surface
%

function [input RF, input RR, input LF, input LR, ...
beta SRF zs, beta SRR zs, beta SLF zs, beta SLR zs,...
beta SRF ys, beta SRR _ys, beta SLF ys, beta SLR_ys] = GG11(t, tdelay R, tdelay L, a, q0,...
d 4RF,d 4RR,d 4LF,d 4LR),

ns = numcols(t);

tp_R =round(tdelay R) %time delay b/w RF and RR
tp_L =round(tdelay L) %time delay b/w LF and LR

LEG_RF = zeros(1,ns);
LEG_RR = zeros(1,ns);
LEG_LR = zeros(1,ns);
LEG _LF = zeros(1l,ns);

BETA SRF zs = zeros(l, ns);
BETA SRR_zs = zeros(1, ns);
BETA SLF zs = zeros(1, ns);
BETA SLR zs = zeros(l, ns);

BETA _SRF ys = zeros(l, ns);
BETA SRR _ys =zeros(1, ns);
BETA SLF ys = zeros(l, ns);
BETA SLR ys = zeros(1, ns);

LEG_RF =[3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,...
3.24,3.28,3.32,3.36,3.40,3.44,3.48,3.52,3.56,3.60,3.64,3.68,3.72,3.76,3.80,3.84,3.88,...
3.95,4.00,4.05,4.10,4.15,4.20,4.25,4.30,4.35,4.40,4.45,4.50,4.55,4.60,4.65,4.70,4.75,...
4.80,4.90,5.00,5.10,5.20,5.30,5.40,5.50,5.60,5.70,5.80,5.90,6.00,6.10,6.20,6.30,6.40,...
6.60,6.80,7.00,7.20,7.40,7.60,7.80,8.00,8.20,8.40,8.60,8.80,9.00,9.20,9.40,9.60,9.80,...
10.0,10.4,10.8,11.2,11.6,12.00,12.4,12.8,13.2,13.6,14.0,14.4,14.8,15.2,15.6,16.0,16.2,...
16.4,16.6,16.8,17.0,17.2,17.4,17.6,17.8,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...
18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...

18.05,18.10,18.15,18.20,18.25,18.30,18.35,18.40,18.45,18.50,18.55,18.60,18.65,18.70,18.75,18.80,18.85,..

18.90,19.0,19.10,19.20,19.30,19.40,19.50,19.60,19.70,19.80,19.90,20.0,20.20,20.40,20.60,20.80,21.0,...
21.30,21.60,21.90,22.20,22.50,22.80,23.10,23.40,23.70,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,...
24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0];

LEG_RR =[3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,...
3.20,3.24,3.28,3.32,3.36,3.40,3.44,3.48,3.52,3.56,3.60,3.64,3.68,3.72,3.76,3.80,3.84,...
3.88,3.95,4.00,4.05,4.10,4.15,4.20,4.25,4.30,4.35,4.40,4.45,4.50,4.55,4.60,4.65,4.70,...
4.75,4.80,4.90,5.00,5.10,5.20,5.30,5.40,5.50,5.60,5.70,5.80,5.90,6.00,6.10,6.20,6.30,...
6.40,6.60,6.80,7.00,7.20,7.40,7.60,7.80,8.00,8.20,8.40,8.60,8.80,9.00,9.20,9.40,9.60,...
9.80,10.0,10.4,10.8,11.2,11.6,12.0,12.4,12.8,13.2,13.6,14.0,14.4,14.8,15.2,15.6,16.0,...
16.2,16.4,16.6,16.8,17.0,17.2,17.4,17.6,17.8,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...
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18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...
18.05,18.10,18.15,18.20,18.25,18.30,18.35,18.40,18.45,18.50,18.55,18.60,18.65,18.70,...
18.75,18.80,18.85,18.90,19.0,19.10,19.20,19.30,19.40,19.50,19.60,19.70,19.80,19.90,20.0,20.20,20.40,20.
60,20.80,21.0,...
21.30,21.60,21.90,22.20,22.50,22.80,23.10,23.40,23.70,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,,...
24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0];

LEG_LF =[3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,...
3.24,3.28,3.32,3.36,3.40,3.44,3.48,3.52,3.56,3.60,3.64,3.68,3.72,3.76,3.80,3.84,3.88,...
3.95,4.00,4.05,4.10,4.15,4.20,4.25,4.30,4.35,4.40,4.45,4.50,4.55,4.60,4.65,4.70,4.75,...
4.80,4.90,5.00,5.10,5.20,5.30,5.40,5.50,5.60,5.70,5.80,5.90,6.00,6.10,6.20,6.30,6.40,...
6.60,6.80,7.00,7.20,7.40,7.60,7.80,8.00,8.20,8.40,8.60,8.80,9.00,9.20,9.40,9.60,9.80,...
10.0,10.4,10.8,11.2,11.6,12.00,12.4,12.8,13.2,13.6,14.0,14.4,14.8,15.2,15.6,16.0,16.2,...
16.4,16.6,16.8,17.0,17.2,17.4,17.6,17.8,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...
18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...

18.05,18.10,18.15,18.20,18.25,18.30,18.35,18.40,18.45,18.50,18.55,18.60,18.65,18.70,18.75,18.80,18.85,..

.18.90,19.0,19.10,19.20,19.30,19.40,19.50,19.60,19.70,19.80,19.90,20.0,20.20,20.40,20.60,20.80,21.0,...
21.30,21.60,21.90,22.20,22.50,22.80,23.10,23.40,23.70,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,...
24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0];

LEG_LR =[3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20,3.20....
3.20,3.24,3.28,3.32,3.36,3.40,3.44,3.48,3.52,3.56,3.60,3.64,3.68,3.72,3.76,3.80,3.84,...
3.88,3.95,4.00,4.05,4.10,4.15,4.20,4.25,4.30,4.35,4.40,4.45,4.50,4.55,4.60,4.65,4.70,...
4.75,4.80,4.90,5.00,5.10,5.20,5.30,5.40,5.50,5.60,5.70,5.80,5.90,6.00,6.10,6.20,6.30,...
6.40,6.60,6.80,7.00,7.20,7.40,7.60,7.80,8.00,8.20,8.40,8.60,8.80,9.00,9.20,9.40,9.60,...
9.80,10.0,10.4,10.8,11.2,11.6,12.0,12.4,12.8,13.2,13.6,14.0,14.4,14.8,15.2,15.6,16.0,...
16.2,16.4,16.6,16.8,17.0,17.2,17.4,17.6,17.8,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...
18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,18.0,...
18.05,18.10,18.15,18.20,18.25,18.30,18.35,18.40,18.45,18.50,18.55,18.60,18.65,18.70,...

18.75,18.80,18.85,18.90,19.0,19.10,19.20,19.30,19.40,19.50,19.60,19.70,19.80,19.90,20.0,20.20,20.40,20.

60,20.80,21.0,...
21.30,21.60,21.90,22.20,22.50,22.80,23.10,23.40,23.70,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,...
24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0,24.0];

for p=1:ns-1

BETA_SRF zs(p) = -asin((LEG_RF(p+1)-LEG_RF(p))/ (d_4RF(p+1)-d_4RF(p)));
BETA_SRR_zs(p) = -asin((LEG_RR(p+1)-LEG_RR(p))/ (d_4RR(p+1)-d_4RR(p)));
BETA_SLF zs(p) = -asin((LEG_LF(p+1)-LEG_LF(p))/-(d_4LF(p+1)-d 4LF(p)));
BETA_SLR_zs(p) = -asin((LEG_LR(p+1)-LEG_LR(p))/-(d_4LR(p+1)-d_4LR(p)));

BETA _SRF ys(p) =0;
BETA SRR ys(p)=0;
BETA _SLF ys(p)=0;
BETA _SLR ys(p) =0;

end

input RF =LEG_RF;
input RR =LEG_RR;
input LF=LEG LF;

input LR =LEG_LR;



beta SRF zs=BETA SRF zs;
beta SRR zs =BETA SRR zs;
beta SLF zs=BETA _SLF zs;
beta SLR zs=BETA SLR zs;

beta SRF ys=BETA SRF ys;
beta SRR ys=BETA SRR ys;
beta SLF ys=BETA SLF ys;

beta SLR_ys=BETA_SLR ys;

299

Rover 1.m

g= Conf 0;

DH_RF =DH(q(:,1));
q RF =DH_RF(2:5,1);

DH_RR =DH(q(:,2));
q RR =DH RR(2:5,1);

DH_LF = DH(q(:,3));
q LF =DH _LF(2:5,1);

DH_LR =DH(q(:,4));
q LR =DH_LR(2:5,1);

q0=[q RF,q RR,q LF,q LR];

Dynamic_Parameters = Dynamics(DH_RF(2:5, 2), DH_RF(2:5, 3));

% theta d a sigma m X
Iyz Ixz
dh_dyn=[DH_RF, Dynamic_Parameters];

%
q=Conf 1;

DH_RF =DH(q(:,1));
q RF =DH _RF(2:5,1);

DH_RR =DH(q(:,2));
q RR =DH RR(2:5,1);

DH_LF = DH(q(:,3));
q LF =DH_LF(2:5,1);

DH LR = DH(q(:,4));
q LR =DH_LR(2:5,1);

ry 1z Ixx

lyy

1zz

Ixy



ql =[q_ RF,q RR,q LF,q LR];
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%
Conf 0.m
function Configuration = Conf 0()
Yom--m-m--- Right Side -------------------
theta IR =0;
theta 2R =0;
theta 3RF = -pi/4;
theta 3RR = pi/4;
theta 4R =0;
%---------- Left Side --------------------
theta 1L =0;
theta 2L =0;
theta 3LF = pi/4,;
theta 3LR = -pi/4;
theta 4L =0;
%
% theta 1,  theta 2, theta3, theta 4

Configuration RF = [theta IR  theta 2R theta 3RF
Configuration RR =[theta IR  theta 2R theta 3RR
Configuration LF = [theta 1L  theta 2L theta 3LF

Configuration LR =[theta 1L  theta 2L theta 3LR

% RF Leg RR Leg, LF Leg,

Configuration = [Configuration RF Configuration RR Configuration LF

theta 4R]';
theta 4R]';

theta 4L]';
theta_4L]';

LR Leg

Configuration LR];




